
HL7 Service Oriented Architecture

Special Interest Group (SOA SIG)

SERVICE ORIENTED ARCHITECTURE
AND HL7 V3

MESSAGING TO SERVICES MIGRATION
METHODOLOGY

VERSION NO. 1.0

DATE: January 17, 2007

Version 1.0

Page 1 Last Revision 5/21/2008

Editors Alan Honey: alan.p.honey@kp.org

(Kaiser Permanente)

Brad Lund : brad.lund@intel.com

(Intel Corporation)

Authors Alan Honey: alan.p.honey@kp.org
(Kaiser Permanente)

Ani Dutta : ani.dutta@va.gov, ani.dutta@siliconspirit.com
(Veterans Health Administration / Silicon Spirit)

Jari Porrasmaa : Jari Porrasmaa <jari.porrasmaa@uku.fi>

(University of Kuopio / HL7 Finland)

Juha Mykkanen : Juha Mykkanen <jumykkan@messi.uku.fi>

(University of Kuopio / HL7 Finland)

Kathleen Connor: kathleen.connor@foxsys.com

(Fox Systems)

Manoj Kumar: Manoj.Kumar@bcbsfl.com

(Blue Cross Blue Shield Florida)

Rick Stevens: Rick J Stevens rstevens@us.ibm.com

(IBM)

Version 1.0

Page 2 Last Revision 5/21/2008

mailto:alan.p.honey@kp.org
mailto:brad.lund@intel.com
mailto:alan.p.honey@kp.org
mailto:ani.dutta@va.gov
mailto:ani.dutta@siliconspirit.com
mailto:kathleen.connor@foxsys.com
mailto:Manoj.Kumar@bcbsfl.com
mailto:rstevens@us.ibm.com

Preface
Notes to Readers

This document is a detailed but informal document, aimed at defining an approach for
implementing healthcare services within a Service Oriented Architecture. This is
intended to complement the Service Specification Framework (SSF) defined within the
Healthcare Services Specification Project (HSSP), but provide an additional interim
method of defining and implementing web services based on HL7 V3 artifacts.

Work is also ongoing to marry this work, and other related HSSP work with the overall
HL7 processes (HDF etc.). As and when that work matures, this document will be
updated and/or replaced.

Changes from Previous Release

This is the first public release of this document.

Acknowledgements

In addition to the listed authors, the following individuals are acknowledged for their
contributions during the development and review of this document.

Ann Wrightson (CSW UK)

Ioana Singureanu (VHA)

John Koisch (OCTL Consulting)

Virinder Batra (IBM)

Version 1.0

Page 3 Last Revision 5/21/2008

Table of Contents

1 Introduction.. 7
1.1 Purpose.. 7
1.2 Background .. 8
1.3 Scope.. 10
1.4 When to Use Services... 10
1.5 Service Definitions.. 12

1.5.1 Types of Services.. 12
1.5.2 Services, Specifications and Contracts ... 13
1.5.3 Structure of a Service Contract... 13
1.5.4 Interoperability using Web Services... 14

1.6 Target Audience ... 14
2 Methodology Requirements ... 15

2.1 Methodology Definition Context... 15
2.2 Methodology Content .. 15

3 High Level Process... 16
3.1 Description.. 16
3.2 Other Context... 18

4 Detailed Methodology for Service Definition ... 19
4.1 Approach Foundations (Top-Down vs. Bottom-Up)... 19
4.2 Methodology Options... 20
4.3 Service Definition Methodology.. 22

4.3.1 Overview / Elements of a Service... 22
4.3.2 Activities / Process Steps.. 38
4.3.3 WSDL Specifications ... 44

5 Guidance for Design Decisions ... 46
5.1 Service Design Considerations .. 46

5.1.1 Modular Design .. 46
5.1.2 Tolerance of Independent Invention ... 46
5.1.3 Types of main functional requirements .. 47
5.1.4 Adaptability .. 47
5.1.5 Granularity.. 48
5.1.6 Abstraction level and composition ... 48
5.1.7 Cohesion/coupling/complexity ... 49

Version 1.0

Page 4 Last Revision 5/21/2008

5.1.8 Completeness.. 50
5.1.9 Design for Reuse .. 51

5.2 Security ... 51
5.3 Process Management ... 51
5.4 Technical Governance ... 51

6 Use Cases.. 53
6.1 Appointment Scheduling ... 53

6.1.1 Physician Arranges For An Inpatient Stay.. 53
6.1.2 Patient Reschedules Outpatient Appointment .. 54
6.1.3 Patient Revises Outpatient Appointment .. 54
6.1.4 Physician Cancels Inpatient Stay for Patient .. 55
6.1.5 Defining Services for the Appointment Scenario ... 55

6.2 Billing Example (Another Approach) .. 66
7 Profiling and Conformance... 77

8 Appendix A – Relationship to HSSP SSF... 77
8.1 Overall SSDF Process (including SOA4HL7).. 78
8.2 Produce SFM (part of main SSDF) .. 79
8.3 Produce RFP (part of main SSF).. 80

9 Appendix B - References.. 81

Version 1.0

Page 5 Last Revision 5/21/2008

List of Tables
Table 1: Model Driven vs. Message Driven discussion ... 21

Table 2: Commonly used HL7 artifacts for elements of a service 22

Table 3: Guidelines for Service identification.. 24

Table 4: HL7 based examples – Service Identification .. 26

Table 5: Guidelines for identifying service interfaces.. 27

Table 6: HL7 based examples - Interfaces.. 28

Table 7: Guidelines for identifying capabilities / operations.. 30

Table 8: HL7 based examples - Interface Capabilities ... 34

Table 9: Guidelines for identifying message content ... 35

Table 10: HL7 based examples... 37

Table 11: Requirements and Functional Specification ... 40

Table 12: Solution Specification PIM Steps... 41

Table 13: Technical Specification PSM Steps.. 42

Table 14: Coupling Definitions .. 50

Table 15: Coupling and Granularity model for billing use case....................................... 76

List of Figures
Figure 1: High-level process for defining service specifications...................................... 17

Figure 2 - Basic Process Flow ... 23

Figure 3: Legacy System .. 66

Figure 4: Financial Patterns .. 67

Figure 5: V3R2 Financial management domain model .. 68

Figure 6: V3R3 Patient account events model.. 69

Figure 7: Business Process Model .. 70

Figure 8: Common Services and the communication bus .. 71

Figure 9: Universal account model ... 72

Figure 10: Universal billable model ... 73

Figure 11: Overall SSF Process (including SOA4HL7) ... 78

Figure 12: Produce SFM (part of main SSF) .. 79

Figure 13: Produce RFP (part of main SSF)... 80

Version 1.0

Page 6 Last Revision 5/21/2008

1 Introduction

1.1 Purpose
The purpose of this document is to describe a methodology for defining services

within the healthcare domain, in particular, for areas covered by Health Level 7 (HL7)
domain content; an effort known as Service Oriented Architecture for Health Level 7
(SOA4HL7)1. The methodology described herein is accompanied by a set of deliverables
relating to infrastructure and architecture that collectively form the overall approach.

The document is particularly aimed at providing guidance that will help in the
identification and enumeration of services based on existing HL7 messaging artifacts.
The document aims to provide a practical approach, especially to existing HL7
committees interested in SOA. Following this methodology should lead to the production
of appropriate (from a SOA perspective) service definitions, which may then be proposed
as standards through the main HSSP process if this is appropriate.

The Healthcare Services Specification Project (HSSP) hosted jointly by the
Object Management Group (OMG) and HL7 has created a methodology for defining
industry standard services, known as the Services Specification Framework (SSF). The
SOA4HL7 effort was chartered to complement their work by providing a method of
defining interim services in a consistent fashion where formal standards have not yet
been developed; recognizing the reality that software vendors and individual healthcare
organizations are developing and implementing services today, without consistency or
agreed methods.

Typically, methodologies consist of process, techniques, roles and artifacts
(deliverables). Therefore, understanding that different types of organizations will define
services for different purposes under various circumstances, rather than define a single,
specific directive process, this document will concentrate on describing the artifacts and
techniques. Specifically, it will focus on the artifacts that should be produced when
defining services, guidelines for the services specification and techniques for design as
well as a set of implementation considerations. Some process alternatives will be
included for illustration purposes only. Where practical, the guidelines will reference
existing HL7 artifacts which can be used as a basis for service definitions. Ideally, a
simple deterministic mapping between existing HL7 artifacts and Service artifacts would
be defined, but this will not provide appropriate SOA-friendly solutions in many cases. It
is believed that the approach defined in this document will be the most valuable in terms
of achieving the desired consistency. Further investigations will continue over time
within HSSP based on experience.

1 The SOA4HL7 project is being run under the auspices of the HL7 Services Oriented

Architecture SIG as part of the larger Healthcare Services Specification Project (HSSP).
http://hssp.wikispaces.com/

Version 1.0

Page 7 Last Revision 5/21/2008

http://hssp.wikispaces.com/
http://www.omg.org/
http://hssp.wikispaces.com/infrastructure
http://hssp.wikispaces.com/

1.2 Background
The methodology described in this document is one of four main deliverables

identified in the approved SOA4HL7 charter. An excerpt of the charter is shown below:

 Architecture Requirements - Define and agree on a set of architectural requirements
that ensure Service Oriented Architecture (SOA) benefits can be realized and
interoperability maximized (at least meeting minimum interoperability levels defined
by HL7).

 SOA Framework - Based on the architectural requirements, define an SOA
Framework/Approach that leverages existing and emerging IT standards to enable
services to be consistently identified, described and used in healthcare environments.

• This should provide a consistent technical context for HSSP OMG RFP
submissions.

• Include both a “generic” SOA approach that is not tied to specific technology and
a specific technology implementation for web services2.

 Methodology - Define extensions to the HSSP SSF methodology for creating service
definitions and implementations, including approaches to conformance and profiling
where appropriate. This should offer a consistent way to define and implement
Services for HL7 (and other healthcare as appropriate) content. This is available at:
http://hssp-infrastructure.wikispaces.com/

 HL7 V3 Infrastructure Mapping - Define a mapping of current V3 artifacts to the
SOA framework. This should provide at least rules for deriving or transforming from
SOA elements (contract or headers) to (at least) mandatory HL7 Wrapper items. This
will include identification of those elements that should be left to other protocol and
technology standards and any constraints that should be imposed on those elements.

In addition, the charter included the following clarification, which is relevant to
this body of work:

“The main HSSP has defined a full methodology for specifying Services, starting
with HL7 Service Functional Models and then OMG RFPs to provide fully
specified interoperable service standards. This project will propose extensions to
the SSDF (and other HL7 deliverables as appropriate) to enable interim service
definitions to be defined in absence of fully specified HSSP services. (This can be
seen as a "lite" process, which will complement and not replace the full HSSP
process defined in the SSF). The purpose is to allow software vendors and
healthcare organizations to define and produce services in a consistent fashion, in
line with overall IT industry standards. In the absence of this, vendors are likely

Page 8 Last Revision 5/21/2008

2 The conceptual solution will leverage other work where possible to provide an abstract
framework. Working within that model, or in parallel with it, we would define the solution based on
the Web Services stack (i.e. XML, SOAP, WSDL, WS-* etc). It should be possible to
subsequently define an implementation of other SOA technology stacks as and when required,
but would not be included in the initial effort. The initial end game has to be an "implementable"
solution, but also needs to provide a good conceptual foundation.

Version 1.0

http://hssp-infrastructure.wikispaces.com/

to continue to develop their own approaches to exposing service functionality
where neither fully specified HSSP services nor a standard SOA framework for
healthcare is available.”

Appendix A contains a set of diagrams that depict the relationship between
SOA4HL7 and the main HSSP SSF.

Version 1.0

Page 9 Last Revision 5/21/2008

In the course of this work, the following questions need to be answered within the
context of SOA:

 How should we define services within HL7 domain areas?

 SOA aims to enable dynamic business change and cost-efficient management of
assets. How do we achieve the above and still maximize value from existing HL7
work?

 How do we define services that are appropriate and consistent?

 In what circumstances does it make sense to use services?

 How much should HL7 specify and what should be covered by “general” industry
standards?

 How much should be left to individual organizations with respect to infrastructure?

 How should the healthcare specific and general IT standards work together, without
creating too much dependency or coupling between them?

 From an architecture and infrastructure perspective, how do we specify enough to
ensure interoperability and no more?

1.3 Scope
This document will ONLY cover the methodology and syntax (e.g. WSDL) to

identify and define HSSP services and is specific to the health services domain; although
it attempts to maximize the use of general IT industry approaches. Infrastructure related
items i.e. technical architecture layers or HL7 transmission wrappers are beyond the
scope of this document and will be covered by other HSSP chartered efforts.

It should also be noted that there are service specifications in progress within
HSSP for four services that provide a range of general-purpose capabilities. One in
particular, the Retrieve, Locate Update Service (RLUS), provides generic interfaces for
locating, retrieving and updating medical records. Through the use of semantic profile
mechanism (see SSF), this service may produce and consume many different forms of
content, including HL7 V3 or V2 messages. Using this approach verses defining more
specific, explicit services via this methodology, is an architectural and implementation
choice that can be made in some circumstances (particularly for data oriented services).
However, the architecture portion of the HSSP effort would still be relevant even in that
case.

1.4 When to Use Services
From a standards perspective the answer is a great deal easier than from an individual
project perspective. When should a standard service be defined? The simple answer is
when sufficient organizations taking an SOA approach identify the requirement for the
service. Certainly, interactive request reply scenarios make very good candidates, e.g.
scheduling, eligibility checking, entity identification, demographics or other data look up
and updates etc. It is however, worth considering the latter question, i.e. in what project
situations should services be used rather than messaging, or vice versa.

Version 1.0

Page 10 Last Revision 5/21/2008

One of the main points of SOA is to enable loose coupling which frees the Service
Consumer from the details of the implementation of the Service itself. From a standards
and interoperability perspective, this is an important aspect.

It must be stated that there is no simple answer or industry consensus to this question,
other than “it depends”. Among others, the following factors should be considered:

 Is this a new development or legacy enhancement or integration effort? Are there
already messaging solutions in place that work or existing services that can be
reused?

 Is the organization committed to a standard architecture, e.g. there may be benefits
from common security, monitoring, management perspectives?

 Is the business process/function volatile or stable? What levels of change are
expected? How important is alignment between system functionality and business
processes. Services that align with the business are claimed to provide better business
agility.

 What technologies do the organization use and what is the direction?

 Is reuse important, and is the capability likely to offer great reuse potential? Services
can provide high levels of reuse particularly where the clients are likely to be
heterogeneous.

 Is there a need for interoperability and information crossing system and/or
organizational boundaries?

 Are there likely to be very large volumes of data transferred between two systems on
a frequent basis. This leads to a messaging or possibly batch/ETL solution.

Messaging approaches have been successfully implemented and deployed in numerous
projects and organizations. Both messaging and service-orientation are also promoted by
infrastructure offerings such as enterprise service buses (ESBs). However, there are
various situations and needs, where the use of service-oriented approach instead of
"traditional messaging" is justified:

 Message-oriented solutions define content, transmission infrastructure and invocation
patterns using an established messaging style. Service-oriented solutions separate
these concerns from each other and provide alternatives for different types of
requirements.

 There are various alternative tools and methods available to support the specification
and implementation of service-based solutions. Common development and
integration tools and platforms support the implementation of services.

 Especially in situations where the interoperability needs focus on deterministic and
functionally oriented requirements where service providers and consumers are easily
identified, the identification and design of service-oriented solutions is
straightforward and intuitive. However, both resource-oriented and activity-oriented
services can be provided.

Version 1.0

Page 11 Last Revision 5/21/2008

 Messaging infrastructure (MOM, message-oriented middleware) is widely used by
service-oriented solutions for communication capabilities, but service-oriented
infrastructures usually also provide support for service creation and hosting. Existing
MOM implementations can be reused for communication in service-oriented
solutions.

 A specific message-oriented transport may require modification of existing
applications that communicate over different transports, or use of gateways or
bridges, tying reliability, auditing etc. to the transport implementation. In fact, these
policies apply across multiple transport channels, and should be supported by
transport-agnostic service definitions.

 In message-centric solutions, the capabilities such as transformations, routing and
process management are separate from the business services and deployed as part of
the message broker or as separate server capabilities in the configuration. In service-
oriented solutions, these capabilities can be defined and deployed as reusable
services.

 Message-oriented programming model requires the developer to deal with entities
such as queues, destinations, sessions, connections etc. Service-oriented programming
model focuses on higher level of abstraction and coarse-grained business functions
which hide the details of underlying infrastructure. This encourages top-down
definition of business-centric services.

1.5 Service Definitions

1.5.1 Types of Services
There are many categorization schemes defined for types of services. For the

purpose of this document, we will consider a simple classification scheme:

 Business Services – These provide specific business functionality, such as
“Scheduling”, “Order Management” and so on. These are often further subdivided
into “Process Services” and “Core Business Services”3. The difference is subjective,
but in general, core business services offer a set of operations, each of which
performs one main single business action, whereas Process Services offer composite
sets of processing that string several activities together (often calling underlying core
business services at each stage)

 Infrastructure (Technical) Services – Infrastructure (Technical) Services – These
are services provided to support the business services and are not specific to
healthcare, but are often subject to specific requirements derived from regulation of
healthcare information, for example by professional bodies or national legislatures.
Examples include: Authentication, Authorization, Logging, Transformation.

 Utility Services – These are also supporting services, such as Printing, eMail, FAX
etc.

Page 12 Last Revision 5/21/2008

3 See CBDI Forum SOA Resource Center, www.cbdiforum.com, among others.

Version 1.0

http://www.cbdiforum.com/

The Services that are in scope of this methodology are really the “Business
Services” as described above, noting that “Process Services” are a way of dealing with
some of the “delayed response” scenarios that are common in HL7 messaging, i.e. an
initial synchronous acknowledgement followed by a subsequent asynchronous response.
Note that these Services may be either “data oriented” (e.g. retrieve or update patient
demographics) or “function oriented” (fill order or book appointment). Operations of
both kinds may be combined within one Service definition where appropriate, although
general best practices tend to keep them separate using a layered architecture.

1.5.2 Services, Specifications and Contracts
A key point that must be stressed is that the purpose in defining the Services is for

interoperability, and as such the real purpose is to define the interface or “Service
Contract”, and not the internal implementation logic of the Service itself.

For the purposes of this document, the “Service Contract” is defined to be the
formal specification of the Implemented Service, including technical level interface and
operation descriptions, any Quality of Service limits or constraints and possibly terms of
use / financial agreements. WSDL would be regarded as part of the Service Contract.

A Service Specification in this document is defined as analysis and design level
documentation that describes the capabilities and functionality of a Service. This can
include both logical (technology independent) and physical (technology specific)
elements. The Service Specification would be an input used in creating the Service
Contract. Note that the logical Service Specification is equivalent to the HSSP concept of
the “Service Functional Model” (SFM). The template and process for this is fully defined
elsewhere within HSSP.

In both cases, these only deal with “externally observable” behavior of the
Service, and NOT the actual internal implementation. Where specification of the internal
implementation is referenced, the term Software Architecture Document (SAD) will be
used (borrowed from the Unified Process).

1.5.3 Structure of a Service Contract
Before describing the methodology, it is worth outlining the key structural

elements within a Service definition, Specification or Contract. Typically within SOA, a
Business Service definition consists of the following structural elements:

 Business Service – This is a set of cohesive business functionality that provides
value added services to consumers of the service. Consists of 1 or more interfaces.

 Interface – A subset of a business service that group sets of operations of similar
purpose.

 Operation – An individual atomic action within an Interface.

 Message – The data that is passed to and from the Service Consumer and
Provider in the form of a document or set of parameters.

There are many alternatives for grouping operations into interfaces, which can be
based on business logic groupings, technical factors or similarity of action. Often,

Version 1.0

Page 13 Last Revision 5/21/2008

administrative operations are separated into an Administrative interface (e.g. to start and
stop the service, to apply configurations etc.) For data oriented services, it is common to
separate query operations, update operations and notification operations into separate
Interfaces.

1.5.4 Interoperability using Web Services
Before continuing further, it is important to make a comment on interoperability.

This part of the discussion is confined to web services specifically.

The current HL7 V3 Web Service Profile provides the useful capability to
transport existing V3 messages using web service protocols. The intention here is for the
service client to automatically be able to interoperate based on the messaging definition.
The service definition becomes effectively superfluous.

The methodology in this document is intended to provide a “service based”
approach, which means that the Service definition (or Service Contract) becomes key and
needs to be available to the client at design time. Ideally, this would in the form of a fully
approved industry standard specification. Where approved standards are not available,
some kind of repository is needed for sharing service specifications at least between those
providing and using the service. This repository is alluded to in Section 3.

Another aspect to consider is the recommendation to use human readable names
for elements of the implementation level Service Description Language (WSDL) rather
than the HL7 artifact IDs, since the Service Client will use the WSDL itself rather than
trying to automatically derive what it may look like at a messaging level.

1.6 Target Audience
The intended audience for this document includes any organization or group

planning on defining automated services within the healthcare domain. This could be
standards development organizations (SDO), software vendors, healthcare payers or
providers etc. The term “services definers” will be used throughout this document to
identify these groups and individuals.

The two key targets are really HL7 domain committees that wish to define
services, and also healthcare software vendors that are implementing services in their
solutions. Those looking to fully understand the rationale and background for the
approach are encouraged to read the document in its entirety. Those intending to define
Services using the methodology should focus on Sections 4.3, 5 and 6. A future release
may include a more concise “how to” guide if the overall approach is accepted.

Although this document is intended to provide a complete solution, various parts
can be used stand alone, e.g. Section 5 (Design Guidance).

Version 1.0

Page 14 Last Revision 5/21/2008

2 Methodology Requirements
Before describing the methodology, the key outline requirements were

established, which provided direction as the methodology developed; these requirements
also provide reviewers with assistance when analyzing the methodology.

2.1 Methodology Definition Context
1) Describe a method for deriving service definitions from existing HL7 V3 artifacts (at

various levels – may include several alternate paths)

2) Give guidance on appropriate granularity for Services and Operations

3) Describe relationship to / fit with current HSSP Service Specification Development
Framework

2.2 Methodology Content
1) Define services in terms of unambiguous, well-defined interfaces.

2) Describe services by their functional roles and responsibilities.

3) Define inputs and outputs of service operations and also the format and constraints on
those inputs and outputs.

4) Describe service relationships in terms of messages and message exchange patterns.
Where appropriate, relate to workflow / process.

5) Service interfaces must be defined independent of their implementation.

6) Support definition and implementation of self-contained services with clearly defined
boundaries and service end-points to allow for service composability and
interoperability.

Version 1.0

Page 15 Last Revision 5/21/2008

3 High Level Process

3.1 Description
Figure 1 depicts an overall high-level process for producing Service

Specifications (HSSP, SOA4HL7 and other models) in the form of a flowchart.

Appendix A includes a set of diagrams that place the SOA4HL7 methodology
within the context of HSSP, basically “from HSSP looking in”. The diagram below
presents a similar picture “from SOA4HL7 looking out”. The SOA4HL7 methodology
itself is really only the dark blue shaded box. The light blue boxes represent relevant parts
of the main SSF (reflected in Appendix A). The gray boxes are suggested additional steps
that users of this methodology should consider.

Rather than describe each box in detail, the flow is described in narrative form
below.

 Starting from a business need, where the scope and purpose for the required
service have been defined, a check is made to see if the need is satisfied by an
existing standard (be it HL7, HSSP or other) which can be used. Assuming there
is no standard, a check is made to see if HL7 and/or HSSP have a relevant
standard in progress that can meet the requirement. The service definer could then
choose to participate and steer the standard accordingly.

 Assuming that there is no standard under development, a check should be made
from any available sources to see whether an existing alternative specification
exists (i.e. not a formal standard, but one that has been produced by going through
this process previously, either by the same organization or other). Ideally, a cross-
organizational repository of such service specifications would exist, but even
within an organization this would be valuable.

 Again, if none is found, a check should then be made to see if the scope is
covered by existing HL7 domain artifacts (static and/or dynamic). If so, then the
SOA4HL7 methodology then comes into play and should be followed to produce
the service specification. (Note that this could subsequently form the basis for a
strong candidate for a future formal HSSP standard.)

 If the scope is not covered by an HL7 domain, then the service definer should
look to see if other standard bodies have any useful artifacts that could be
substituted. The SOA4HL7 could still then be followed (to a greater or lesser
degree). Even if the domain models are completely custom or unique to a single
organization, the methodology may still be able to be applied. However focus is
placed on where existing HL7 model artifacts are found. Note - for a service to be
considered "HL7 V3 compatible", the payload must be derived from the RIM and
be able to be fully defined by a MIF.

Version 1.0

Page 16 Last Revision 5/21/2008

Figure 1: High-level process for defining service specifications

Version 1.0

Page 17 Last Revision 5/21/2008

3.2 Other Context
There are some emerging methodologies and processes for service oriented

modeling, analysis, design and development CBDI SOA Process, SOMA and
Papazoglou. While this document does not presume any given approach, it is useful to
identify end-to-end service-oriented process steps to relate this methodology to the
overall SOA activities.

Service oriented modeling and architecture (SOMA) defines three service
modeling steps: identification, specification and realization, with several sub-steps
prescribing several artifacts to be delivered. Identification can start from domain
decomposition and from analysis of existing systems, and include goal-service modeling
to tie business goals to the identified service abstractions. During service specification,
artifacts comprising SOA are formally defined. These include composite and atomic
services, interfaces etc. Service model covers service invocation syntax and semantics, as
well as service ownership, dependencies, versioning, and governance issues. Realization
includes construction of actual services, processes and applications.

Papazoglou is another methodology for service-oriented design and development
which includes planning phase and eight iterative phases

 Planning: business need, scope, purpose, initial requirements

 Analysis: business case analysis, alternatives for implementing business
processes

 Design: identifying and specifying services and business processes in a stepwise
manner

 Construction: development and description of service implementation, definition
of technical interface description, also development of service consumers (clients)

 Testing: validate that requirements have been met and deliverables are in
accordance with used conventions and conformance profiles

 Provisioning: definition of governance (central/distributed), certification,
metering and rating, billing

 Deployment: roll out services and processes (or versions) to applications and
users

 Execution: ensure that new process is carried out by all participants, services are
found, static and dynamic bindings are operational, and messaging and
interactions are operational

 Monitoring: measure and monitor service level, performance, availability etc.,
evaluate objectives.

Methodology in consecutive chapters of this document focus mainly on
analysis/identification and design/specification steps of these processes, but have
consequences to other parts of the process as well (e.g. construction, testing, deployment
etc.).

Version 1.0

Page 18 Last Revision 5/21/2008

4 Detailed Methodology for Service Definition
From the high level process detailed in Figure 1, this chapter concentrates mainly

on the activity "Use SOA4HL7 derivation rules to define service interfaces."

While the overall aim of the SOA4HL7 work is to achieve a level of consistency,
it must also be accepted that different process approaches will be taken in different
circumstances. This section will focus on consistency of structure and definition, and
identify a small number of options for deriving service definitions. The aim is to provide
sufficient flexibility to meet most needs, balanced with sufficient consistency of method.
The rationale is that a small number of well defined options are better than every
organization going entirely its own way.

Service definition, design and development processes aim to identify the right
services, organize them in a manageable hierarchy of composite services, and
choreograph them together to support business processes.

This section will concentrate on defining the artifacts, while section 5 will set out
guidance for making the appropriate trade-offs.

4.1 Approach Foundations (Top-Down vs. Bottom-Up)
The first level of discussion to consider is the basic philosophy of top-down vs

bottom-up service definition.

 Top-down: Starts from detailed business requirements and process definitions. A
top-down strategy starts with the requirements and business process models and
refines them in a stepwise fashion down to a software implementation. This
includes decomposition of the business domain into its functional areas and
subsystems. In top-down development, business process models provide a
blueprint for the identification of services. Services are then modeled and realized
by service providers, and consumed by service consumers. In terms of HL7
artifacts, this would mean starting from the RIM, DIM, storyboards etc.

 Bottom-up: Starts from identified needs and existing solutions and applications.
A bottom-up strategy originates from the technical basis and works upwards to
the requirements and business process models by building services on a top of
existing (legacy) systems. This includes analysis and utilization of APIs,
transactions, and modules from legacy systems such as mainframe or ERP
applications. This often requires componentization of the legacy systems. Bottom-
up approaches often include two activities: add a layer of services on top of
legacy systems using wrappers and adapters, and re-factoring legacy systems. In
terms of HL7 artifacts, the equivalent would mean starting from Message
schemas, CIM/LIM (or HMDs) or parts thereof.

A compromise is often suggested to these alternatives, which is termed “Meet-in-
the-middle”, whereby both routes are taken for the same case and attempt to rationalize
between the two.

Version 1.0

Page 19 Last Revision 5/21/2008

4.2 Methodology Options
There are many different alternatives for the ways that existing HL7 artifacts

could be used in defining service definitions. In order to provide some level of
consistency without over-constraining service definers, based on the above discussion,
two archetypal options are defined below. These are as follows:

1) Model Driven

Use the HL7 domain and dynamic models without specific message level constraints, i.e.
 RIM (Reference Information Model)
 Domain
 Topic
 DAM (Domain Analysis Models)
 DIM (Domain Information Models) / D-MIM (Domain Message Information

Models)
 CIM (Constrained Information Model) / R-MIM (Refined Message Information

Model)
 CMETs (Common Message Element Types).
 Vocabulary and Data Type definitions and restrictions
 Storyboard
 Use Cases
 Activity Diagrams
 Business Rules
 Application Roles (v2 or v3)
 Trigger Events (v2 or v3)

2) Message Driven

In addition to the elements listed above, this option would also make use of the
actual message level constructs, i.e.

 Interaction
 LIM (Localized Information Model) / HMD (Hierarchical Message Descriptions)
 Message Type (v2 or v3)
 Message Segment (v2)
 Generated XML Schema

Note that as of this writing, the HDF itself is undergoing revision, so some of the
V3 artifacts are changing. Where possible, both existing and new artifacts will be
referenced. Note that in a typical “bottom up” approach, existing legacy systems would
be a factor, but the purpose of this paper is to focus on how HL7 artifacts may be used.

Each approach listed above has advantages and disadvantages and will remain
somewhat subjective; see Table 1 for a brief discussion.

Approach Advantages Disadvantages

Model driven Best business process
alignment and “purest”
SOA

 More analysis work

 Least reuse of existing HL7

Version 1.0

Page 20 Last Revision 5/21/2008

Page 21 Last Revision 5/21/2008

Approach Advantages Disadvantages

 Freedom to choose
appropriate granularity and
process/service division

 Consistency between
different services

 Clear separation of
concerns and
responsibilities

artifacts

 Compatibility with existing
applications requires extra work

 Additional effort required for
local adaptation

Message Driven Quicker

 Accurate level of detail

 More reuse of existing
artifacts

 Few changes required in
applications

 Potential misalignment of
services with business

 Inappropriate granularity of
operations

 Expertise of the architecture or
design of existing systems
required

 Additional effort required for
generalization

Table 1: Model Driven vs. Message Driven discussion

In general, given that the purpose is to try to preserve the main benefits of SOA,
the favored approach would be more model driven. However, we must accept the reality
that different organizations will favor different paths, and providing a means to achieve
greater consistency will be valuable whichever route is taken.

In order to keep this approach simple, a single, compromise approach is proposed,
which is basically model driven, but allows for using Message level concepts where it
seems appropriate. To ensure that appropriate Operations are defined, it is important to
work through the process from the higher level model as much as possible, and consider
issues relating to process, reusability, granularity etc. before simply defining an operation
to process each different message that is received.

Version 1.0

4.3 Service Definition Methodology
The first sub-section (4.3.1) will identify the main elements of a Service that need

to be defined and options for defining them, with a focus on using HL7 artifacts. This
will be followed by a discussion of some generic process steps and where the artifacts fit
(4.3.2). As discussed earlier, the latter is NOT intended to be a definitive guide on
process. Finally, a section will describe specific considerations for creating WSDL
definitions. Note that 4.3.1 and 4.3.2 describe some of the same steps but from a different
point of view. The latter describes more of the overall process, following an MDA-style
approach broken into three main sections, i.e. functional requirements and specification,
then the Platform Independent Model then the Platform Specific Model. The former
focuses specifically on elements of a service and how they may be derived, and does not
differentiate the steps for producing logical business descriptions, PIM and PSM.
However The process does provide cross-references back to the sections in 4.3.1.

4.3.1 Overview / Elements of a Service
Specification of the following elements will be described in this section: Service,
Interface, Capability / Operation, Message (Input, Output, Exceptions)

Table 2 summarizes which HL7 artifacts would most commonly be used in defining the
elements of a Service. The purpose is to provide a summary view of some of the in-depth
analysis that follows.

Deliverable HL7 v3 Artifacts that may be
Used

HL7 v2 Artifacts that may be
Used

Service Domain, Topic, Storyboard,
Application Role, Trigger Events

Chapter, Application Role,
Trigger Events

Interface Domain, Topic, Storyboard,
Application Role, Trigger Events

Application Role, Trigger Events

Capability /
Operation

DIM/D-MIM, Application Role,
Storyboards, Activity Diagrams,
Use Cases, Trigger Events
(Interaction, CIM/R-MIM, LIM/
HMD, Message Type – if using
message oriented level constructs)

Application Role, Trigger Events,

(Message Types – if using
message level constructs)

Message RIM, DIM, CIM/R-MIM, CMETs,
Vocabulary and Data Types

(LIM, HMD, Message Type and
Schema – if using actual message
level constructs)

Message Types, Message
Segments

Table 2: Commonly used HL7 artifacts for elements of a service

Depending on the approach, these elements could be defined in a number of steps.
The end goal is to reach a technical level service definition. Ideally, this would be

Version 1.0

Page 22 Last Revision 5/21/2008

produced first as a business level Service description, second as a Platform Independent
Technology Specification and finally as a Platform Specific Specification (e.g. WSDL).
The basic flow is depicted below.

Figure 2 - Basic Process Flow

The process described in the next section is divided into these three stages.

However, this section is aimed at showing how the main elements are derived, as far as
possible - independent of the overall process, so are dealt with in a single section. Where
there are key differences between a business and technical level specification, these are
highlighted.

Version 1.0

Page 23 Last Revision 5/21/2008

4.3.1.1 Identifying a Service

4.3.1.1.1 Guidelines

 General SOA HL7 Artifact Based

Primary
(preferred)

 Top down Service Portfolio
Planning, based on analysis of
business processes and business
information.

 Service name usually includes
the name of the “focal”
business object where there is
one followed by a “passive”
verb. Names should be
meaningful to business.

 Granularity based on cohesion
and completeness (see Section 5
below)

 Use abstraction where
appropriate.

 Examples: Member
Registration, Flight
Reservation, Employee
Recruitment, Order Fulfillment
etc.

 Use Whole Domains and/or
Topics (where available) as
basis, applying considerations of
granularity and abstraction.

 Follow Service naming
convention (see left hand
column)

 Granularity based on cohesion
and completeness (see Section 5
below)

 Use abstraction where topics and
even domains are specific to one
sub-type of a Domain model
class (where a reusable service is
viable)

 Examples: Eligibility
Verification, Laboratory Order
Management, Ambulatory
Encounter Management (or
Encounter Management),
Scheduling.

Alternatives Based on Middle-in (Goal-
Service Analysis)

 Based on existing legacy
interfaces (bottom up)

 Based on “Meet-in-the-middle”
combination of both top down
and bottom up methods

 Aggregate a set of related
Application Roles and or Trigger
Events, applying granularity and
abstraction criteria as mentioned
above.

Table 3: Guidelines for Service identification

4.3.1.1.2 Rationale / Discussion
Ideally, identification of the service should be driven by business analysis. HL7

artifacts are structured into Domains and Topics that provide a good level for many
services. One drawback of using “Topic” is that it is only a publishing concept rather than
part of the formal model, but this does, in many cases, give a more appropriate result
from an SOA perspective than other artifacts.

Version 1.0

Page 24 Last Revision 5/21/2008

It is difficult to provide a precise answer to the question “What makes a good
service?” However, the interfaces and operations included should all be closely related in
a business sense and part of the same overall function with similar purpose and be fairly
complete for that function. Granularity is also a concern, and will be fully covered in
Section 5.

In some cases, the Domain level is more appropriate, in others the Topic or group
of Topics is more appropriate. In the end, some subjective judgment must be used.
Aggregation of several topics into a single service particularly applies where there are
several topics for different subtypes of a main object, as in the case of “Person” and
“Organization”.

Service names are usually “passive” and usually include the name of the “focal”
business object to which they relate, optionally followed by a passive verb. Note that this
“object” may be data or function oriented.

In some cases, abstraction techniques can be applied to define a more reusable
service. The Entity Identification and Retrieve, Locate Update Services (EIS and RLUS)
currently in progress within HSSP are good examples of this re-use, where very generic
interfaces can be defined which allow for specializations through a technique known as
profiling. Another example could apply to Scheduling. As of this writing, HL7 V3 only
contains Notifications of Appointments; although there is work in progress on
Appointment Scheduling and a future plan to cover resource slots. An abstract service
interface could be defined to schedule any kind of finite resource, which allows for
specialization depending on the type of resource being scheduled. Another example could
be Order Management (for various different kinds of orders). This approach can lead to
very powerful and reusable services.

Ideally, the HL7 Domain Committee for each domain should identify the
appropriate Services, although it should be noted that some services may well be across
multiple domains, e.g. where a more generic or abstract service is defined as discussed
above, e.g. Order Management. This would require cooperation between Domain
Committees.

In terms of Business vs. Technical specifications, there should be little difference
at this level, other than the possible restriction of one interface per service in certain
technologies (see the Interface section 4.3.1.2).

4.3.1.1.3 HL7 Based Examples
The examples below are based on Domains and Topics. They are only meant to

be illustrative, but should give a good idea of appropriate level and naming.

Suggested
Service Name

Domain Topics Covered Comments

Eligibility
Verification

Claims &
Reimbursement

Eligibility

Authorization

Eligibility and Authorization
are closely related. The other
Topics in the Domain relate to

Version 1.0

Page 25 Last Revision 5/21/2008

Page 26 Last Revision 5/21/2008

Suggested
Service Name

Domain Topics Covered Comments

different kinds of business
activity.

Laboratory
Order
Management

Laboratory Filler

Result

Query

Could (should?) alternatively
consider a more abstract “Order
Management” Service.

The Topics on their own are
too low level and are closely
related. Could use topics as
separate interfaces.

Ambulatory
Encounter
Management

Patient Admin Ambulatory
Encounter

Could combine with In-patient
Encounters into one
“Encounter Management”
Service, possibly with two
interfaces. The word
“Management” was added to
make the purpose more clear.
As a Domain, Patient Admin is
too fragmented (not cohesive)
to be a single service.

Scheduling Scheduling

+ others (see
comment)

Appointment

+ others (see
comment)

Would could make this service
more generic and include other
scheduling over and above
appointments. The Single
Service would also include
both Appointment Scheduling
and Notifications. Resource
slot and other scheduling
would make sense as the same
service interface, but may be
different service
implementation.

Table 4: HL7 based examples – Service Identification

Version 1.0

4.3.1.2 Identifying Interfaces
Service definitions include 1 or more Interfaces. In many cases, Services may

only have one “business” interface. For technical specifications, administrative interfaces
may be defined for operations such as “Start Service”, “Stop Service”, “Pause Service”
etc. The discussion below only deals with the “business” interfaces.

4.3.1.2.1 Guidelines

 General SOA HL7 Artifact Based

Primary
(preferred)

 If there is a natural split of
business functionality into two
or three areas, then define
different interfaces. Questions
of granularity are similar to that
for the Service level.

 May split different interaction
types/styles into different
interfaces (particularly for data-
oriented services), e.g. Query
(read only) vs Update vs
Notification (subscription
based).

 As general SOA in left hand
column. Also consider different
Topics for interfaces if more than
one in the Service.

 Examples

Eligibility Verification (Service) ->
Eligibility Query, Authorization
(Interfaces)

(Laboratory) Order Management
(Service) -> (Laboratory) Oder
Maintenance, (Laboratory) Order
Query (Interfaces)

Alternatives Define a single business
interface for the Service with
the same name.

 Define a single business interface
for the Service with the same
name.

Table 5: Guidelines for identifying service interfaces

4.3.1.2.2 Rationale / Discussion
Even at a functional level, it is reasonable to wish to group read only, query style

operations into one interface, updates into another, and possibly notifications into a third.
These often have very different Quality of Service characteristics (performance, security,
reliability etc.) and can be implemented and deployed as separate reusable elements.

At the technology specific or implementation level, this may actually be achieved
simply by defining different Services. Issues of granularity and naming are similar to the
Service level.

Where there is only one business interface for a service, it can be named the same
as the Service. Where there is more than 1, this can be more directly related to a Topic, or
without a relevant available Topic, use an aggregation of 1 or more Application Roles.

Version 1.0

Page 27 Last Revision 5/21/2008

4.3.1.2.3 HL7 Based Examples
Further expanded examples are given below (For illustrative purposes only):

Suggested Service and
Interface Names

Topics Application
Roles

Comments

Eligibility Verification:

- Eligibility
Query

- Authorization

Eligibility

Authorization

N/A

This could also validly be
kept as a single Eligibility
Verification interface,
although splitting looks
preferable given the
different business purpose.

Laboratory Order
Management

- Laboratory
Order
Maintenance

- Laboratory
Order Query

Filler
Result

Query

N/A

Again, this could be kept
as a single interface. Note
also that some “Results”
operations may not be
separate operations, but
asynchronous responses to
requests to the “Filler”.
This can be handled by
defining a “Process
Service” that calls separate
“Core Business Services”

(Note earlier comment
regarding an abstract Order
Management Service)

Ambulatory Encounter
Management

- Ambulatory
Encounter
Management

Ambulatory
Encounter

N/A Only one interface. If the
Service had combined
Inpatient and Outpatient,
then they could be
separated at the Interface
level.

Scheduling

- Scheduling

- Notification

Scheduling
(V2)

Appointment

N/A

See discussion above for
the Service itself. Could
provide abstract
capabilities.

Table 6: HL7 based examples - Interfaces

Version 1.0

Page 28 Last Revision 5/21/2008

4.3.1.3 Identifying Capabilities / Operations

4.3.1.3.1 Guidelines

Page 29 Last Revision 5/21/2008

 General SOA HL7 Artifact Based

Primary
(preferred)

 Identify individual business
actions within the service
scope, often based on steps
in the business process,
particular those that cross
domain or system
boundaries.

 For data-oriented services,
ensure major business
objects within scope have
create, read, update and
delete capabilities defined.

 For services where
deterministic outcomes are
required, use explicit,
directed instructions rather
than deriving implicit
instructions from generic
messages where possible.
(see discussion below)

 Capability Names are active
verbs, usually with business
object as subject. Names
should be meaningful
business actions rather than
system actions such as
“update record”.

 Defining Operations may
also take specific interaction
styles or performance
implications into account,
which may lead to splitting a
Capability into multiple
operations or occasionally
aggregating Capabilities
together.

 There are many approaches

 Identify individual actions from
Storyboards, Use Cases, Activity
Diagrams, Application Roles,
Trigger Events

 DIM/D-MIM – look at major
classes in scope and ensure that
main create, read, update, delete
actions are supported. This applies
to services which manage and
control data.

 Follow naming and granularity
guidelines as for General SOA.
Consider defining and/or using
CMETs for data content of
appropriate granularity operations

 Examples:

Authorization (I/f) -> Request
Authorization, Nullify Authorization
Request, Query Authorization Request
Status (Operations).

Scheduling (I/f) -> Book Appointment,
Cancel Appointment, Reschedule
Appointment (Operations).

Version 1.0

Page 30 Last Revision 5/21/2008

 General SOA HL7 Artifact Based
to defining queries, see the
discussion below.

 Event-based or pub-sub
issues will be considered in
later versions of this
document

 Granularity based on
performance considerations
and adaptability (see Section
5 below)

 Examples: Book Flight,
Reserve Resource, Check
Credit, Update Address, etc.

Alternatives (Bottom-Up) Use existing
legacy interface APIs or
messages and re-define or
wrap them as service
operations.

 Use individual Interactions and/or
CIM/R-MIM/LIM/HMD/Message
Types and define operations for
each

Table 7: Guidelines for identifying capabilities / operations

4.3.1.3.2 Rationale / Discussion
Business capabilities may be defined in a business level, non-technical model, then
refined into Operations in a technical model. They represent the same basic concept. In
some cases, a single capability may lead to more than one operation, or less frequently
multiple capabilities in a single operation.

The Capability/Operation is the actual “unit of functionality” or the actual individual
actions to be carried out. It is at this point that differences between Top Down and
Bottom Up approaches really materialize. Appropriate actions can be based on the
Storyboards and Activity Diagrams if available, as well as Application Roles and any
identified Trigger Events. Section 5 contains guidance on appropriate granularity for
Operations.

The need for a “deterministic outcome” must also be considered:

 Where this is not needed, i.e. in an event publishing type scenario where the
publisher is notifying others that something has happened but is not instructing
particular action, then an EDA (Publish and Subscribe) approach is ideal. In this
mode, it is acceptable and common to use general-purpose messages and derive
appropriate meaning from them.

 Where deterministic outcomes are required, use explicit, directed instructions or
messages rather than deriving implicit instructions from generic messages. This
keeps semantics clearer and better aligned with business.

Version 1.0

In a messaging world, it is common practice to define large, multi-purpose
messages and derive the appropriate instruction and meaning from them in
“hidden” business logic. This obscures the behavior from the service client and
often leads to non-deterministic states of objects. Wherever possible, explicit
actions should be identified that take deterministic action. This does NOT imply
that the “how” should be exposed, but it is important that the “what” is made very
clear.

There is a trade-off, in the sense of preserving loose-coupling, but where there is a
genuine need for dynamic logic, which does process generic messages, this
should be separated into a process layer or service, which itself calls the more
explicit services; or Publish and Subscribe architectures should be used.

One specific current example from HSSP is in the Entity Identification Service
(EIS). EIS defines an explicit Capability/Operation to Create an Entity
(Reference). Current messaging solutions often intercept different message types
such as registration messages and implicitly derive the need to create an entity
reference and create the reference all within one functional unit of processing. It is
better architectural practice to separate these two steps so that the derivation of
need is separated from the actual action. This increases modularity and reusability
and better surfaces deterministic outcomes.

In cases where message level constructs are being considered, each Interaction
within the scope of the Interface should be considered i.e. from the point of view of the
Service Provider. Even for the “top-down” case, it may be reasonable to consider
aggregating a number of interactions and messages together into a single operation,
particularly when defining the data content.

Capabilities/Operations should be named actively, as in “action verb”, usually
followed by a noun (the name of the focal class.)

Another consideration is the interaction pattern or choreography. In current HL7
messaging scenarios, it is common practice to include a parameter to indicate the nature
of the response e.g. immediate response vs. delayed response. In services, it is more
typical to define one or more different operations where the behavior required is
different; once again meaning, that the design time behavior is more deterministic.

The overall impact on the client is similar, in that instead of determining which
value to set on a parameter, the client identifies a different operation to call. Where a
specific sequence of events is required, e.g. an immediate acknowledgement followed by
a later asynchronous response, an “orchestration” can be used which controls the overall
choreography. This is not relevant to the definition of the service interface itself, although
an orchestration can itself be exposed as a service.

In some cases, identification and definition of operations can be dependent on the
data that is being exchanged. In a messaging world, it may be common to define a large
message with many different sub-components within the message. Consideration should
be given to identifying different operations that deal with specific subsets of the data if
this is a common business scenario; this is subject to any guidance related to granularity.
A simple example might be an operation to maintain a patient’s address, as well as, an

Version 1.0

Page 31 Last Revision 5/21/2008

operation to maintain demographics. With this in mind, CMET flavors are worth
considering, i.e. consider creating new CMETs that fit with service operations. The
following discussion considers a specific example of this:

Consider the X12 HIPAA Eligibility Verification Request Response Transaction,
Some have proposed making this a “service” which works in a legacy system comprised
of different files, accessible through several point-to-point interfaces or “screen scraping”
for covered parties or contracted providers, both of which are associated with covered
services and their various limitations related to diagnosis, gender, age, quantity, care
setting and provider type limitations; associated by plan.

However, in a service oriented architecture, this transaction would need to be
processed as a series of service calls to distinct modules which contain the data of record
for the enterprise, e.g., member registry, benefit plan registry, provider registry. So
business domain model design should reflect this decomposition in the way that the
component models of the domain are chunked out.

For example, we have the ability to design domain model with discrete modules
or Common Message Element Types (CMETs) which can be reused as query services to
a registry, e.g., for patient demographics or carried as informational components in a
composite service, e.g., a notification to subscribers that a particular patient is scheduled
for a procedure. The CMETs can carry more or less information depending on how the
type of coupling required by the architecture. For example, the CMET may simply carry
the patient identifier because the other application either already has the other
information about the patient, doesn’t need the other information about the patient, or can
retrieve the other information about the patient via a query to a shared patient registry. If
domain models are designed with this flexibility in mind, then the use of CMETs would
be increased, and an understanding about the benefits of keeping key information
optional.

There are many approaches to defining query operations, key differences being
those with fairly stable or fixed parameters vs more generic open queries with SQL-like
or XQuery syntax. The HL7 “Query By Parameter” approach defines a generic structure
that can be used to control sorting, limit the number of responses and identify parameters.

The common trade-offs of flexibility against performance occur in query design.
Defining a fixed structure, or a set of related structures provides good performance at the
expense of flexibility. One fairly common approach is to define a small number of
queries which return increasing amounts of data, e.g. a basic, medium and full data set.

Version 1.0

Page 32 Last Revision 5/21/2008

4.3.1.3.3 HL7 Based Examples
Examples shown below (for illustrative purposes only):

Service, Interface and
Operation Names

HL7 Artifact (if any
relevant)

Comments

Eligibility Verification:

- Eligibility Query

- Query Eligibility

- Authorization

- Request
Authorization

- Request Immediate
Authorization

- Nullify
Authorization
Request

- Query
Authorization
Request Status

Eligibility Query
Request (Trigger
Event)

Authorization
Request (Trigger
Event)

Authorization
Nullify Request
(Trigger Event)

Authorization Query
Request (Trigger
Event)

These operations fairly closely
match the HL7 Messaging
Interactions, but there would
probably not be separate
operations defined for different
Specialties, although it could be
done that way too. This would be
handled by an input parameter
indicating the request type. This
leaves a closer match with the
Trigger Events rather than the
interactions.

Note – defining separate
operations is one way to deal with
situations where the service
requestor can indicate whether an
immediate response is required.
Nullify and Query would only
apply in the asynchronous
response case.

Laboratory Orders

- Laboratory Orders
Management

- Order Lab
Observation

- Cancel Order

- Etc.
- Lab Order Query

- View Order

Order Activate
(Trigger Event)

Order Cancel, Order
Nullify (Trigger
Events)

Find Order, Find
Result, Find Promise
(Trigger Events)

Correct mapping would take more
in depth analysis.

Version 1.0

Page 33 Last Revision 5/21/2008

Page 34 Last Revision 5/21/2008

Service, Interface and
Operation Names

HL7 Artifact (if any
relevant)

Comments

Ambulatory Encounter
Management

- Ambulatory Encounter
Management

- Create Ambulatory
Encounter

- Update Ambulatory
Encounter

- Close Ambulatory
Encounter

Ambulatory
Encounter Started
(Interaction)

Ambulatory
Encounter Revised /
(Interaction)

Ambulatory
Encounter Ended /
Aborted / Nullified
(Interactions)

In V3 documentation,
appointment notifications are also
included, these appear to overlap
with scheduling so have been
omitted.

Not clear without further analysis
whether separate operations
would be used for abort / nullify
etc. as opposed to a single close
operation.

Scheduling

- Scheduling

- Request
Appointment

- Cancel Appointment

- Reschedule
Appointment

- Check Available
Appointments

- Etc.

Event S01 (V2)
.

Event S04 (V2)

Event S02 (V2)

Event S25 (V2)

Other than Notifications, these are
not yet defined in V3. There are
V2 events that correspond to
some of these operations,
although there may be some
difference in granularity.

However, it would also be fairly
easy to map some of these
operations to the resulting
notification trigger events.

Table 8: HL7 based examples - Interface Capabilities

4.3.1.3.4 Define Exceptions
Identify all business level exceptions for each Operation explicitly in the service
description. HL7 V3 provides a standard set of metadata for errors, which in the case of
web services maps fairly closely to the SOAP fault structure. When using WSDL, it is
common practices to define a single Fault element with a code structure to define the
actual errors. In HL7 cases, the standard metadata structure should be used (as defined by
the AcknowledgementDetail class. Any existing identification of error conditions in HL7
documentation (or elsewhere) can be used as a source.

Version 1.0

4.3.1.4 Identifying Message Content (Capability/Operation Input and
Output)

4.3.1.4.1 Guidelines
Define the information content consumed and produced by each Capability/Operation.

 General SOA HL7 Artifact Based

Primary
(preferred)

 For data oriented services, this
is normally complete business
objects or sets of related objects

 For functional services, the
appropriate parameters and
return values are defined.

 It is important to consider
extensibility, and use of more
general document type
approaches are now more
common.

 Messages are normally named
as a (qualified) noun describing
the business content.

 Examples: Flight Reservation
Details, Credit Card
Verification Request,
Reservation Confirmation.

 If there is a matching CIM/R-
MIM for the scope of the
operation then this should be
used. Otherwise start with DIM
and identify appropriate classes
in scope.

 Look for relevant reusable
information structures (CMETs)

 May use aggregation of 1 or
more CIMs / R-MIMs, LIMs,
HMDs or message content.

 Data Types and Vocabulary
should be based on existing V3
artifacts where they exist.

 Examples: Patient
Demographics, Laboratory
Order, Eligibility Authorization
Request, Appointment
Confirmation

Alternatives Bottom Up – Existing API
content or message schema.

 Use previously generated
Message Schema

Table 9: Guidelines for identifying message content

4.3.1.4.2 Rationale / Discussion
At the business capability level, this should be as an information model

(preferably UML).

For the Operations, at the PIM level this can still be represented as a UML model
or other neutral form that represents the data hierarchically (as in the HL7 CIM/R-MIM,
LIM or HMD).

Version 1.0

Page 35 Last Revision 5/21/2008

At the PSM/implementation level, assuming an XML solution, an XML Schema
should be produced. The rules for defining or generating XML Schema are beyond the
scope of this document, but a suggestive worked example is included below.

Where the Operation was derived directly from an Interaction, and also in some
other cases, there may already be an existing HL7 V3 R-MIM available which closely
matches the requirements and appropriate granularity of message. If this is the case, then
it should be used. If the granularity does not seem appropriate, or if there is no R-MIM
available, then either a more constrained model may be needed (to get more fine grained)
or revert to a higher level model (e.g. DIM). A search should also be made for relevant
CMETs. Vocabulary and Data Types from HL7 should be used to define the actual
individual data items where a fully defined more coarse grained structure is not available.

As an alternative, where they already exist and are relevant, existing standard
(non-normative in the case of HL7) XML schema or schema fragments may be reused.

Messages should be named using a noun describing the business content. At the
implementation level, it is typical to append “request” or “response” to the message name
to indicate its role in an operation.

Notes:

 See also http://www.hl7.org/v3ballot/html/help/hdf/hdf.htm#HDFAnnex2, which
discusses the use of UML with stereotypes to produce Domain Analysis models
aligned with the RIM.

 For a service message to be considered "HL7 V3 compatible", the payload must be
derived from the RIM and be able to be fully defined by a MIF.

 In the overall HSSP process, Semantic Profiles explicitly define a way to take a group
of related messages, possibly derived from RMIM, and relate them specifically to a
Service Structure. Semantic Signifiers are the conceptual equivalent of
PSM/Implementation level semantic constructs.

4.3.1.4.3 HL7 Based Examples
Examples shown below (for illustrative purposes only):

Service, Interface, Operation
and Message Names

HL7 Artifact (if any
relevant)

Comments

Query Eligibility

 Eligibility Query Request

 Eligibility Query
Response

Request Authorization

Eligibility Event Query
Request (RMIM)

Eligibility Event Query
Results (RMIM)

In these cases, there seems
to be reasonable
correspondence between
existing messages and
operation content.

Further analysis would be
needed with respect to
granularity and other aspects
before determining

Version 1.0

Page 36 Last Revision 5/21/2008

Page 37 Last Revision 5/21/2008

Service, Interface, Operation
and Message Names

HL7 Artifact (if any
relevant)

Comments

 Authorization Request

 Authorization Response

Authorization Event
Query Request (RMIM)

Authorization Event
Complete (RMIM)

appropriate content.

Request Appointment

 Appointment Request

 Appointment Response

Cancel Appointment

 Appointment Cancel
Request

 Appointment Cancel
Response

Reschedule Appointment

 Appointment Reschedule
Request

 Appointment Reschedule
Response

etc.

V2 Messaging segments
(ARQ, SCH, RGS, AIS,
SIG, SIL, SIP, ARP)
could be used as a basis
or relevant parts of
Notification models
from V3.

Other than Notifications,
these are not yet defined in
V3. There are V2 messages
that correspond to some of
these, although there may be
some difference in
granularity.

However, it would also be
fairly easy to map some of
these to the resulting
notification messages.

Lab Order

 Lab Order Request

 Lab Order Response

Placer Order (CMET)

Fulfiller Order (RMIM)

Table 10: HL7 based examples

Version 1.0

4.3.2 Activities / Process Steps
This section identifies typical steps carries out within a Service Development

process, and where the use of HL7 artifacts may fit in. How these artifacts are used in
deriving specific elements of the Service definition was covered in the previous section.
This section also considers a wider view in terms of planning and developing overall
architecture solutions and not just the service interface definitions (which is the primary
aim of this document). This includes the internal service implementation logic, and also
usage patterns and process implementations. However, it is believed that this additional
material provides useful context. A cross-reference is included below back to the main
steps identified in the previous section.

 Where an activity is beyond the scope of solely interface definition (i.e. mainly
concerned with the internal logic or external process / choreography issues), the
text is italicized.

 References to the deliverables from the previous section are in bold type.

4.3.2.1 Requirements and Functional Specification
This stage produces the business level definition of the service.

Page 38 Last Revision 5/21/2008

Step Description HL7 Artifacts

1) Define
requirements

Identify the set of requirements to be included
in the service, the basic integration model and
relevant process.

Document the interoperability scenarios/use
cases. For example, order fulfillment,
observation result notification, or person
identity lookup.

Top down - process models, business
objectives, measurable goals, categorization and
decomposition of the business environment into
business areas and business processes etc.

Bottom up - identify functional features to be
reused.

Use Cases,
Storyboards,
Application Roles,
Trigger Events,
Interactions

2) Describe
capabilities
(process and
information)

This step and step 3 covers steps 4.3.1.1 and
4.3.1.2 above, i.e. identification and
description of Services and Interfaces.
Top down – Functional and Information
models, definition of process scope (where the
process starts and ends, related users and
stakeholders, inputs and outputs for each of
them, different types of events and activities,
conditions and synchronization).

RIM, DIM/D-
MIM, Use Cases,
Storyboards,
Application Roles,
Business Rules,
Trigger Events,
Interactions,
CIM/R-MIM,
LIM, HMD,
Message Types

Version 1.0

Page 39 Last Revision 5/21/2008

Step Description HL7 Artifacts

Identify the Business Objects that are relevant
to interoperability. For example,
“LaboratoryOrder”, “LaboratoryObservation”,
“Person”, “Patient” may be either exposed by
the Service or used by the Service. For instance,
Lab may expose “Order” and “Laboratory
Observation” but use the ‘Person” or “Patient”
identity information provided by the Person
Service. This analysis will also help identify
potential dependencies on other Services.

The Business Object definitions should already
be represented in Domain Models. Review the
Domain Models looking for those classes of
interest. If the object don’t appear at all or they
are incomplete, ideally the Domain Models
should be updated. For example the
“Laboratory Order” must appear as a
specialization of a generic “Order” or needs
additional components.

Once the business objects are identified, the
behavior should be described based on the state
transitions in scope. Similarly, any notifications
triggered by those state transitions must be also
identified. In order to determine any behavior
required from other services, identify
dependencies on interfaces and notifications.

Bottom up – Service registry, portfolio of
available services and processes, legacy
systems for wrapping.

3) Identify and
name service
components

Identify Service Provider, Service Consumer.
Finalize Service and Interface Names and
descriptions. Define responsibilities of service
provider and also consumer in relation to the
identified interfaces and capabilities.

Domain, Topic,
Application Role,
Trigger Events

4) Map
requirements
to
components

This is the beginning of step 4.3.1.3
(completed in step 4 of the PIM below)
Map the identified requirements to the
responsibilities and interfaces of the identified
components. Fully describe the capabilities in
business terms (not as formal “operations”).
Define features as either required or optional.

DIM/D-MIM,
Application Role,
Storyboards,
Activity Diagrams,
Use Cases, Trigger
Events,
Interaction,
CIM/R-MIM,

Version 1.0

Page 40 Last Revision 5/21/2008

Step Description HL7 Artifacts
Define extensible features and mechanisms for
extensions.

LIM, HMD,
Message Type

5) Produce
logical
service
specification

Produce a logical Service Specification. This
pulls together the business context and
requirements and functional descriptions into a
complete logical description of the Service
capabilities. The HSSP SFM Template may be
used for this document.

N/A

Table 11: Requirements and Functional Specification

At this point, the equivalent stage of the “SFM” in the main SSDF methodology
has been reached, i.e. we have a functional specification.

4.3.2.2 Solution Specification (PIM)
This stage defines the initial technology solution, but still at a platform independent level.

Step Description HL7 Artifact

1) Refine
interaction
solution

Refine the interaction solution, for example
the deployment and interaction style.
Consider centralization vs federation,
interaction patterns

N/A

2) Refine
component
definitions

Identify integration points in the architecture
of the participating systems.

Refine the responsibilities of the components,
identify possible extension needs and needed
security features.

Define internal logic specification, and/or
how legacy system logic will be used.

N/A

3) Define detailed
dynamic model

Specify interaction sequences, which may
also contain user interaction.

Storyboards,
Activity Diagrams,
Use Cases, Trigger
Events,
Application roles,
Interactions,

4) Specify
operations and
messages

Completion of step 4.3.1.3 and 4.3.1.4
above. Operations and Information contents
and semantics (messages) are specified as e.g.
document definitions in document style,
parameter definitions in procedural style, and

Storyboards,
Activity Diagrams,
Use Cases, Trigger
Events,
Application roles,

Version 1.0

Page 41 Last Revision 5/21/2008

Step Description HL7 Artifact
functional needs as e.g. operation names and
document/message types.

The interface details should be unambiguous,
well-defined interfaces (inputs and outputs of
service operations + their functional
constraints and generic format)

Define features as either required or optional.

Refine extensible features and mechanisms
for extensions.

All business level exceptions should be
identified and described for each operation.

May also define further interactions that are
part of the service implementation, e.g.
interactions with legacy systems behind
service facades.

RIM, DIM,
CMETs,
Interactions,
CIM/R-MIM,
LIM, HMDs,
Message Types /
Definitions,
Vocabulary and
Data Types

5) Define QoS /
implementation
considerations

Refine the requirements for implementations
or further technical and policy specifications.

QoS - Policy definitions concerning security,
performance, reliability, scalability,
availability, transactional requirements,
change management and notification etc.

N/A

6) Produce
Platform
Independent
Model /
Specification

Produce a Platform Independent Model /
Technical Specification. This provides a
detailed level platform independent
representation of the service functionality.

Table 12: Solution Specification PIM Steps

In the main HSSP process, this is part of the RFP submission process. In general,
submitters would be asked to include a Platform Independent Model for their solution.

4.3.2.3 Technical Specification (PSM)

Step Description HL7 Artifact

1) Define
implement-
ation scope

Select and group features from functional
specification to be implemented, if not all are
implemented or mandatory

N/A

2) Technology
selection

Refine the required technical capabilities of the
solution and link them to available

Follow SOA4HL7
Architecture

Version 1.0

Page 42 Last Revision 5/21/2008

Step Description HL7 Artifact
technologies, including necessary routing,
protocol mediation and other transformation
mechanisms. Consider the suitable technology
and interfacing options of participating systems
or existing solutions which are to be used.

Select set of technologies to support the service
(transport (messaging, enveloping, reliability
etc.), interface (functionality, information),
security.

guidelines and/or
full HSSP OMG
RFP process.

3) Produce
Platform
Specific
Model
(PSM)

Refine functional specification with technology-
specific features (e.g. simple or complex types,
messaging style such as data-oriented or rpc or
process-oriented)

4) Define
environment
services

Identify technology-specific services
(/consumers), interfaces, operations and
parameters; specify their responsibilities

N/A

5) Produce
technology
specific
interface
specification

Create technology-specific interface
specification:

e.g. for web services:

1. describe service interface

2. specify operations and messages, including
exceptions
3. designate messaging (e.g. SOAP) and
transport (e.g. HTTP) protocol

4. define bindings and actual service location

5. If applicable, publish to registry

6) Define
Conformance

Define technical conformance levels

7) Produce
Release
Document-
ation

Document implementation-specific features of
the service, infrastructure etc, extensibility
options etc.

Table 13: Technical Specification PSM Steps

Step 5 (and to some extent 6 and 7) would include the final output from the full RFP
submissions in the HSSP process.

Version 1.0

Note on generation of physical models: Approaches such as OMGs Model-Driven
Architecture (MDA) and in tooling are beginning to allow the possibility of generating
PSMs from detailed models. However, PSM generation is still not uniform but tool- or
project-dependent at the moment. There is no agreed abstraction or functionality level
especially regarding what goes in CIMs and PIMs. Most of the SOA literature does not
see "generation from higher level models" among main service acquisition options to date

4.3.2.4 Implementation and Deployment
The focus of this document is on defining Services. However the services have to be
implemented and deployed. This will include acquisition or development, testing,
deploying and support. This should also involve registering the services in a services
registry. The accompanying architecture document discusses some of these issues.

Version 1.0

Page 43 Last Revision 5/21/2008

4.3.3 WSDL Specifications
This section specifically considers creation of WSDL specifications in light of the

discussion above. This is based on WSDL v1.1. (The emerging WSDL V2.0 standard
will be covered in a later version) and will include guidance on style and naming. This
only covers the “logical” section of the WSDL and does not cover any of the technology
specific binding information. This will either be considered in the Architecture document
or a later version of this document. This covers the Port, Binding and Service elements.
Also, see the note in Section 1.5.4 with regard to WSDL naming.

Also note that the definitions should conform to any current WS-I profiles
currently in existence. Any WS-I rules should override anything in this document.

WSDL <DOCUMENTATION> element.
 Recommend briefly documenting purpose, scope, policies, non-functional

characteristics etc.

This is optional but strongly recommended. This information should be fully
documented in a design level specification, but it is useful for clients to be able to
retrieve all key information from one document.

WSDL <PORT TYPE> element.
This is an abstract (logical) definition of an interface.

 Create one for each “Interface” as identified in Section 4 above

 Name the Port Type “XxxXxxXxx” where XxxXxxXxx = the business descriptive
Interface Name as a “UpperCamelCase” string

WSDL <OPERATION> element.
 Create one for each “Operation” as identified in Section 4 above.

 Name the Operation “XxxXxxXxx” where XxxXxxXxx = the descriptive Operation
Name as a “UpperCamelCase” string

WSDL <INPUT> element.
This identifies a message that the operation accepts as input

 Create one for the input message for the “Operation” as identified in Section 4 above.

 Name the Message “XxxXxxXxx” where XxxXxxXxx = the descriptive Message
Name as a “UpperCamelCase” string

WSDL <OUTPUT> element.
This (optionally) identifies a message that the operation responds with as output.

 Create one for the output message (if any) for the “Operation” as identified in Section
4 above.

 Name the Message “XxxXxxXxx” where XxxXxxXxx = the descriptive Message
Name as a “UpperCamelCase” string

Version 1.0

Page 44 Last Revision 5/21/2008

WSDL <FAULT> element.
 If identifying errors, create one Fault message element for the “Operation”.

 Name the Message “XxxXxxXxxFault” where XxxXxxXxx = the operation name as
a “UpperCamelCase” string.

WSDL <TYPES> element.
This must include an explicit definition of the XML Schemas used in messages. No
specific guidance on schema design or naming is included at this stage. May include in a
later version

WSDL <MESSAGE> element.
Each message used in an Operation must be declared as a MESSAGE element. Naming is
described under the various Operation components described above.

Version 1.0

Page 45 Last Revision 5/21/2008

5 Guidance for Design Decisions
This section provides guidance on appropriate granularity and other central

attributes for services and operations. In addition to functionality and information,
structural and external software quality attributes are considered. Structural software
attributes include coupling and cohesion, and main external software quality attributes
(ISO/IEC 9126-1:2001) include functionality, reliability, efficiency, usability,
maintainability, and portability.

In SOA design, solutions for a given process are seen as composite federations of
services connected via well-specified contracts. These business services or processes can
be composed of finer-grained services that are supported by infrastructure and
management services such as those providing technical utilities such as logging, security,
or authentication, and those that manage resources.

This section also identifies some of the trade-offs and approaches that should be
considered when designing a new service. These acknowledged software engineering
best practices lead to solutions that are easier to maintain and more responsive to ongoing
change to business level requirements and processes.

One other question that needs to be considered, but is not covered in this version
of the document is: Are there optimal design patterns for the development of HL7 domain
artifacts, e.g., CIMs/R-MIMs and Messages or CDA to better support their use as service
payloads? For example, to maximize service reuse, should the HL7 Development
Framework provide guidance on designing cohesive models at the appropriate level of
granularity to better enable their composition and orchestration as service components?

5.1 Service Design Considerations

5.1.1 Modular Design
Modular design refers to the decomposition of a software system into a series of

units that are loosely bound to one another and which implement a set of features that are
closely related. Modular systems are easier to maintain and are less fragile since changes
to such systems can be typically isolated to a set of specific areas without impact to other
portions of the overall system. Successful modular design relies on definition of simple
and abstract interfaces between functional units; interfaces which adequately encapsulate
the internal implementation details of the unit, allowing these details to be changed
without affect to other units within the system.

5.1.2 Tolerance of Independent Invention
Effective systems are not only modular, but they should also be flexible, allowing

individual units to be provided from a wide variety of sources and allowing the system as
a whole or in part to be used as a component of larger systems. Systems that are not
flexible are difficult to integrate into larger solutions and are difficult to upgrade in the
event superior implementation of individual system units are realized. Units within a

Version 1.0

Page 46 Last Revision 5/21/2008

flexible system are specialized, focusing on doing one thing well while leaving other
tasks to other units within the system. A unit that is too broad in its functional mission is
difficult to reuse within subsequent, unanticipated use cases and may contain valuable
function that cannot be reused since it is not packaged as a standalone, modular function.

5.1.3 Types of main functional requirements
A key consideration is the nature of the main functional requirements, which leads to
different “types” of services. Common types are:

 Data Oriented / Information sharing: based around creation, update and retrieval of
messages and/or documents

 Function Oriented / Shared functionality: based around reuse of business functionality

 User facing / usability: based around providing direct user functionality, such as
portals, context management services, WSRP portlets. These can provide fine grained
operations as opposed to the more coarse grained operations for application to
application interactions. Note that many service implementations may also include
finer grained local operations that are “private”, i.e. used by the external facing
“public” operations.

 Process Oriented / workflow management: based on coordinating invocation of a
number of services into a sequence or choreography, using orchestration or
composition approaches.

One other kind of service that should be touched on is one that is “event based”. The
approach known as “Event-Driven Architecture” (EDA) is often paired with SOA in an
overall solution (some see it as part of SOA, probably incorrectly). From a technology
perspective, this is usually implemented as a “Publish and Subscribe” solution. EDA is
not covered fully in the first iteration of SOA4HL7 work.

5.1.4 Adaptability
Ideally, design of a service and its operations should consider approaches that

would enable the service to adapt to use within future systems and to deal with future
requirements and the likelihood that the operating environment surrounding the service
will be subject to change. This requires analysis of the service and identification of areas
most subject to future change.

Usage context, information model, functionality, interaction with other
components and method of communication are some of the areas which may undergo
change when adapting a service for use within a subsequent solution. While a highly
adaptable service is most desirable in the general case, one should also consider the
impact adaptability has on ease of use of the service. In some cases, a pre-defined and
configured service may be preferable; one that supports a plug and play deployment
model. This is often the case in relatively closed systems where little evolution is
expected and the resulting solution is expected to be stable and in use for a long period of
time.

Version 1.0

Page 47 Last Revision 5/21/2008

However, in more evolutionary situations, where the information a service deals
with and the users and uses of the service are continually changing, it is often wise to
build in a degree of configurability to a service to cope with the ever changing landscape
in which it will be used.

5.1.5 Granularity
The level of granularity chosen for a given service and its operations is an

important consideration since it can affect the degree of coupling and cohesiveness and
responsiveness of the service and system it’s used within. Service granularity refers to the
scope of functionality and purpose of a service. Operation granularity refers to the
functional scope and corresponding message size for single transactions. The following
should be considered when defining the granularity of a new service and its operations:

 Fine-grained services in a bottom-up development model typically increase
cohesion and decrease complexity of the service and coupling within the service.
However, fine-grained services increase the number of connections and thus the
coupling between collaborating services.

 Encapsulating legacy systems with a coarse-grained services layer will typically
result in less of a development effort since it is easier to generalize existing
functionality into coarse-grained service interfaces. This benefit is magnified
when using an approach related to standard-based service definitions.

 Since coarse-grained services require less communication than fine-grained
services, network performance is typically better in the coarse-grained case.

 Coarse-grained services are typically more easily identified by domain experts
since they tend to map more directly to business process level activities.

 Coarse-grained services introduce increased coupling within the service, but
increased cohesion from the viewpoint of the service user.

 When interactions involve transfer of accountability (typically found in B2B
situations), self-contained interactions should be emphasized, leading to coarser-
grained service operations.

 Coarse-grained services are often used for inter-enterprise communication and for
intra-enterprise communication between business applications due to their focus
on activities defined at the business process level.

 Finer-grained services are best used when communicating between parts of a
composite application inside a given organization where the internal network is
faster and more stable. High level of interaction between fine-grained components
can result in unacceptable overhead when used in a distributed, cross-enterprise
environment.

5.1.6 Abstraction level and composition
In SOA design, solutions for a given process are seen as composite collaborations

of services connected via well-specified contracts. A business or process service itself
can be composed of finer-grained services that are in turn supported by infrastructure and
management services such as those providing technical utility such as logging, security,
or authentication, and those that manage resources.

Version 1.0

Page 48 Last Revision 5/21/2008

One common method of abstraction in SOA is to provide more generic functional
capabilities as operations. Examples of this are the current HSSP Specifications for Entity
Identification (EIS) and Retrieve, Locate, Update (RLUS). These both can deal with
many different kinds of content.

Similarly, one can look at management of Pharmacy, Laboratory, Radiology
orders and see functional similarities. Defining an Order Management service from a
functional perspective that can be specialized for Lab, Pharmacy and so on has potential
merit.

5.1.7 Cohesion/coupling/complexity

5.1.7.1 Coupling
Coupling is a measure of the degree to which components rely on the inner

workings of other components in a particular solution, necessitating re-engineering the
whole solution when a piece or component changes. Loose coupling between individual
services is desirable since it minimizes the overall system impact when a given service is
changed or replaced. Loose coupling can be achieved by reducing the number of
dependencies between services, eliminating unnecessary relationships and minimizing
reliance on external services and specific infrastructure features. Flexibility of solutions
and reduced design-time coupling are pursued by postponing different bindings to late
phases in the systems development. These bindings include location (where the service
is), interface (what the syntax of the interface operations and data elements is), data (what
the data contents used through the service are) and semantics (the meaning of interface
elements and operations) level.

There are a number of design-time trade-offs which can influence the degree of
coupling between a service and its consumers. The following table illustrates several
examples of service design trade-offs which can affect level of coupling:

Tighter Coupling Looser Coupling

Use of identifiers and references when
interacting with a service. Both service and
consumer must understand how to acquire and
interpret these identifiers and references.

Including all necessary information on a
given concept within transactions
between service and consumer. This
may lead to some degree of redundancy
and verbosity of information exchanged.

Reliance on a single, fixed, service instance.
Disruption of this instance can have immediate
impact on service consumers.

Multiple deployed instances of a service
and virtualization of service location
can lead to more resilient systems which
can tolerate outages of a given service
instance.

Strongly typed and strictly enforced service
interface parameters. This combination can
make a service interface more difficult to

Designated schemes to locally extend
the data exchanged between service and
consumer can be used to evolve a given

Version 1.0

Page 49 Last Revision 5/21/2008

Page 50 Last Revision 5/21/2008

Tighter Coupling Looser Coupling
evolve. service interface while maintaining a

degree of backward compatibility.

Reliance on specific external services or
specific infrastructure features increases the
number of dependencies which must be agreed
on between service and consumer.

Self-contained services with minimal
infrastructure dependencies result in
fewer dependencies spanning service
and consumer and a looser degree of
coupling.

Use of small messages or fine-grained and
numerous operations. Consumer must
understand the set of operations required to
perform a higher level business process
activity and must understand order
dependencies between these operations.

Use of larger-grained messages and/or
documents related to business process
state or business process level activity.

Synchronized service operations which rely on
availability of the service. Request/reply
operations where the consumer is blocked
until a response is received results in tighter
coupling; outage of the service will impact the
consumer.

Asynchronous and/or guaranteed
message delivery model leads to more
loosely coupled systems that are more
tolerant of periodic component outages.

Stateful operations where service maintains
state based on previous consumer interactions.
Management of state increases the number of
dependencies between service and consumer.

Stateless operations or those in which
prior state is transferred as part of each
message.

Table 14: Coupling Definitions

5.1.7.2 Cohesion
The extent to which elements of a service or a solution contribute to one and only

one task (functional cohesion), the extent to which activities and services use the same
messages (communicational cohesion) and the extent to which services perform logically
similar functions (logical cohesion). Highly cohesive modules can be used for a number
of both intended and unanticipated purposes without dragging along a lot of functionality
that is not germane to the central task at hand.

5.1.8 Completeness
When defining the operations for a service, particularly when defining a reusable
standard, consider the “completeness” of the operations. For example, in data oriented
services, are operations included that enable all appropriate state changes defined for the
information object, (create, update, delete, retrieve, suspend, reinstate etc)

Version 1.0

5.1.9 Design for Reuse
Service reuse is another important consideration when designing a new service.

Typically, it is easier to reuse finer-grained, simple services across a broader set of
solutions and use cases. While service reuse can lead to increased ROI, reusable services
typically require greater development effort given the broader set of use cases they are
designed to support. The process of designing reusable services tends to focus on making
the service and its interfaces more generic and abstract. Reusable, generic services may
also be derived by factoring common function and behavior out of an existing set of
related concrete services.

5.2 Security
SOA enables loosely coupled applications to be assembled from a set of internal

and external services (web services) that are distributed over a connected infrastructure.
Each partner in the collaborating service must protect their sensitive data. In some cases,
the partners must protect even the existence of a service from unauthorized probing.
Finally, the partners must be able to enforce their collaborating transactions. Thus, an
SOA must address issues of authentication, access control, encryption, non-repudiation,
and authorization.

The distributed nature of SOA makes addressing security concerns a critical
success factor. The primary concern in SOA is to establish an interoperable framework
that enables security for services, applications, and users in a trusted environment and
complies with established corporate policies. These standards and techniques to provide
security in a SOA are evolving rapidly.

Note – overall issues of security are orthogonal to the process of designing
appropriate business service interfaces.

5.3 Process Management
Some services, especially those that are coarser grained, include some degree of

workflow or business process orchestration. This is often the case when a service is
composed of a number of lower level services that are accessed in a prescribed sequence
to implement a given business process activity. While it is possible to imbed this
orchestration task within the service implement, it is often desirable to design the service
to separate process orchestration handling from individual functional responsibilities.
This can lead to a more agile service that can quickly react to changes in business process
or changes in the underlying services used since many of these changes can be made at
the workflow level without impact to the underlying functional units which together
make up the aggregate function provided by the service.

5.4 Technical Governance
With SOA, you can expect that business process cycles will be different from

vendor product cycles. As a result, it is inevitable that, in the case of long-running or
long-lived processes, you will need to support scenarios in which different versions of a
business process exist concurrently on a changing infrastructure. Managing this challenge

Version 1.0

Page 51 Last Revision 5/21/2008

has implications throughout the project development lifecycle, not just for the runtime
but also for the tools and methods used to define business processes within an enterprise.

You can manage the challenge of the dichotomy between business process cycles
and product cycle by doing the following:

1) Reducing the impact of changes by modularization

2) Achieving middleware independence by defining the explicit process state

3) Monitoring and handling business exceptions

1) Reducing Impact by Modularization

Just as services can have different levels of granularity and permutations in the
enterprise, processes also can have such granularity. This granularity appears when
processes are designed as a composition of individual process modules. Each module
offers a service interface and manages its own particular state internally. It then becomes
much easier to change parts of the processes by developing new process modules that are
selected from existing services using policies.

2) Achieving Middleware Independence with Explicit Process State

Current business process middleware engines maintain their process state
internally. This dependency ties the process instances to the particular middleware
engine, sometimes even to a particular version of the middleware. To avoid this, business
process designers should elevate the explicit state beyond the engine level at each process
step that leads to a waiting state until an external event arrives.

Thus, there is a need to be able to maintain and communicate state as distributed
across the SOA. One particular programming model support for capturing these state
descriptions is the set of specifications included in the WS-Resource Framework (as
published on IBM developerWorks). These specifications allow the programmer to
declare and implement the association between a Web service (a process module) and
one or more identified, datatyped state components called WS-Resources.

3) Business Exceptions Monitoring and Handling

Even if the enterprise has spent a significant amount of time and effort to
understand and model its business processes, undoubtedly unplanned business exceptions
can still occur. A fully automated, services-oriented infrastructure that is capable of
supporting any such exceptions to the business processes is unrealistic. This means that
all business processes and their supporting infrastructure should be designed to allow
manual recovery and control. Furthermore, for each business or technical domain, the
organization should identify individuals that can handle such exceptions and act on the
infrastructure. In most process and services identification modeling activities, the focus is
on delivering mainstream models and a few variations. The business analysts must look
at making the processes more granular so that unexpected variations and exceptions will
be easier to handle in the operational environment.

Version 1.0

Page 52 Last Revision 5/21/2008

6 Use Cases
This section outlines some business scenarios and how services may be defined to
support them.

6.1 Appointment Scheduling
The scenario below is adapted from the September 2006 Scheduling V3 Ballot material
under the Appointment Topic. Some sample service operation invocations are included in
line in italics, some of which are discussed in a separate subsection below.

6.1.1 Physician Arranges For An Inpatient Stay
Orthopedic surgeon Dr. Sara Specialize determines, during an initial outpatient
assessment, that patient Mr. Adam Everyman is a good candidate for a total hip
replacement. Dr. Specialize arranges for Mr. Everyman to be put on the wait list for
orthopedic surgery in the Good Health Hospital. The expected duration for the inpatient
stay will be 6 days. The operation is to be performed by Dr. Specialize herself,
approximately two months from now. In the meantime, all the necessary administrative
requirements (e.g. insurance authorization) and medical tests (pre-operation screening)
can be arranged by the GHH for Mr. Everyman.

After authorization and screening have been approved, the inpatient planner for the Good
Health Hospital schedules a 6-day admission for Mr. Everyman
(Eligibility:checkEligibility, Scheduling:bookAppointment), taking into account the
availability of a hospital bed (Resource:checkAvailability, Resource:reserveResource or
Scheduling:getAvailableSlots, Scheduling:bookAppointment depending on scope of
Scheduling) in the surgical care unit in combination with the required session time in Dr.
Specialize's OR schedule on the second day of the admission
(Scheduling:bookAppointment). As a result of the scheduled admission, the hospital
information system automatically triggers a notification of the new appointment
(Scheduling:notifyAppointment)to the GHH Electronic Patient Record for Mr. Everyman.

The Electronic Patient Record provides a general view of all patient-related data to care
providers within the Good Health Hospital, including specialists who use the system to
prepare themselves for treating patients and to store their notes on a patient's medical
history, evaluation and prognosis. Part of the patient record is an overview of all prior
and planned admissions for a patient, as for outpatient encounters and other healthcare
activities.

A request for his medical chart is sent to the central medical archive
(MedicalRecords:requestChart) and/or (RLUS:locateResource,retrieveResource), which
will deliver the chart on its regular delivery round 2 days prior to the scheduled visit.

The central medical archive runs an Archive Management system, that uses planned
admissions to provide 'pick lists' for delivering patient charts from the archive (or from
temporary locations where the chart resides) to the appropriate department on time. The
data for the scheduled inpatient stay is used to provide the necessary information for

Version 1.0

Page 53 Last Revision 5/21/2008

selecting the right chart (e.g. general inpatient chart) and knowing when and where it
should be available.

The associated operation is placed in Dr. Specialize's OR session for day 2 of the stay.

There is a close relationship between inpatient logistics and the OR Management
system, at least for patients with a scheduled operation during their stay. The way
planning for the care units and the operating rooms are coordinated may differ among
hospitals, but when the inpatient stay is scheduled this usually results in a status change
(Scheduling:notifyAppointment) for the associated operation. This is placed in a specific
OR session, for which ordering and planning may be refined later.

The hospital kitchen is informed of the dietary requirements for Mr. Everyman.

Food Management system is tightly linked to inpatient logistics, to make sure that
sufficient meals are available for inpatients and that dietary requirements are met.
Therefore the scheduled admission might be communicated to the food management
system (Scheduling:notifyAppointment) in order to provide input for personnel planning
and/or the ordering of ingredients. Note that the actual preparation of meals is usually
bound to the eventual admission of the patient.

6.1.2 Patient Reschedules Outpatient Appointment
Mr. Adam Everyman has a conflict with the time that the new appointment was
scheduled for the outpatient assessment of his right hip. Mr. Everyman calls the office of
Dr. Specialize to reschedule the appointment for the outpatient assessment. Dr.
Specialize's assistant reschedules the 10-minute slot to another 10-minute slot on the
same day as the previously booked appointment (Scheduling:rescheduleAppointment).
The appointment is rescheduled in Dr. Specialize's schedule for one of the outpatient
clinics associated with the Good Health Hospital. As a result of the rescheduled
appointment the hospital information system issues a notification of the reschedule to the
GHH Electronic Patient Record for Mr. Everyman (Scheduling:notifyAppointment).

The request for his medical chart sent to the central medical archive, will be updated with
the rescheduled time. (MedicalRecords:updateChartRequest),

The request for the recent orthopedic x-ray images sent to the radiology PACS, will be
updated with the rescheduled time. (Scheduling:notifyAppointment or
Orders:updateOrder)

The rescheduled appointment is sent to the patient tracking system to update its
schedules. (Scheduling:notifyAppointment).

6.1.3 Patient Revises Outpatient Appointment
Mr. Everyman calls the office of Dr. Specialize to communicate the fact that he will be
staying with his daughter until the scheduled appointment. If they need to contact him,
they should call his daughter. Dr. Specialize's assistant revises the previously booked
appointment with the new contact person's name and phone number. The appointment is
revised in Dr. Specialize's schedule for the outpatient clinic where the appointment was
booked. (Scheduling:updateAppointment) As a result of the revised appointment the

Version 1.0

Page 54 Last Revision 5/21/2008

hospital information system issues a notification to update Mr. Everyman's daughter's
phone number in the GHH Electronic Patient Record for Mr. Everyman.
(Person:updateDemographics)

The revised appointment is sent to the patient tracking system to update its schedules.
(Scheduling:notifyAppointment)

6.1.4 Physician Cancels Inpatient Stay for Patient
Mr. Everyman calls the office of Dr. Specialize to report that his pain is much less and he
would like to postpone the surgery. Dr. Specialize examines Mr. Everyman (after a
suitably scheduled out-patient appointment) and agrees that he does not need surgery at
this time. Her assistant calls GHH to cancel the previously booked inpatient encounter
appointment (Scheduling:cancelAppointment). As a result of the canceled appointment,
the hospital information system of the Good Health Hospital notifies all interested parties
of the current status. Each receiver then triggers internal processes to perform the
following actions:

The entry of the scheduled appointment is canceled in Dr. Specialize's OR session
schedule. (Scheduling:cancelAppointment)

The medical chart archives cancel the request for Mr. Everyman's medical chart.
(MedicalRecords:cancelChartRequest)

The radiology PACS cancels the request of Mr. Everyman's recent orthopedic x-ray
images. (Scheduling:notifyAppointment or Orders:cancelOrder)

The patient tracking system updates its schedules. (Scheduling:notifyAppointment)

6.1.5 Defining Services for the Appointment Scenario
Based on the four steps above, this section will define a sample service and operations
based on the guidelines in section 4. This again is only intended to be illustrative of some
of the concerns that may be considered. It is not intended to be the definitive solution.

6.1.5.1 Defining the Service
In this case, we start with the HL7 Domain “Scheduling”. This intuitively appears to be a
good level for a single service, including all of the appointment related functions
described in the scenario. It is a fairly cohesive and coherent set of business functionality
that is not tightly coupled with other functional areas. One consideration is how abstract
the service should be, i.e. specific to appointments or more general for any finite
resources? The functionality of booking/reserving, rescheduling, canceling of slots etc.
appears to be potentially common to many different resource types. In defining standard
services, this approach would be recommended, where a generic scheduling service
would be defined, with different semantic profiles for the different information content or
resource types where necessary. For the sake of this example however, we will constrain
the discussion to Appointments to keep within the scenario.

Version 1.0

Page 55 Last Revision 5/21/2008

So, the Service Definition is:

 Name: Appointment Scheduling Service

 Description: This service provides capabilities to manage patient appointments. This
includes the ability to check availability of appointments, book, reschedule and cancel
appointments, as well as notifications to interested parties when an appointment is
made or updated. It also provides capabilities to query for existing appointments and
for open slots.

6.1.5.2 Defining the Interfaces
As indicated above, the service will provide capabilities for scheduling appointments, and
also providing notifications. There are no real V3 artifacts to base this on, since the actual
scheduling side has not yet been defined in V3. It is a subjective judgment whether to
separate these capabilities into different interfaces, but since the basic requirements and
nature of the interactions are different, they are separated in this definition. There may
also be an “administrative” interface for starting and stopping the service, but we will not
define that here, since we are concentrating on the business definition. So, two interfaces
are defined:

Interface 1:

 Name: Appointment Scheduling

 Description: This interface provides capabilities to book, reschedule and cancel
appointments.

Interface 2:

 Name: Scheduling Query

 Description: This interface provides capabilities to query for schedule information
(free or scheduled slots etc.)

Interface 3:

 Name: Appointment Notification

 Description: This interface provides capabilities to request and receive notifications
when an appointment is made or updated.

6.1.5.3 Defining the Operations
We will consider each of the above interfaces in turn, since the first two have only V2
precedent, and the latter V3.

Firstly, the Scheduling interface. V3 has not defined this area yet, so we look to V2 to
direct us. Some of the Events identified provide good operations, i.e. Request
Appointment (S01), Cancel (S04), Reschedule (S02) and so on. These are good, intuitive
business actions with about the right granularity. Even though version V3 doesn't have
corresponding interactions for these actions, the application role Appointment Requester
also indicates a need for request appointment action. In defining the operations, some
other considerations occur. Firstly, we could consider some of the process concerns, e.g.

Version 1.0

Page 56 Last Revision 5/21/2008

what about validating that the patient is known and identified, and checking whether the
patient is eligible for the service being requested. Although these are separate business
actions which would be provided by other services, they could be included as part of a
composite or process service within the overall Scheduling Service. There is no “correct”
answer. The recommendation in cases like these is to define atomic operations for the
scheduling without these additional capabilities and allow individual organizations and/or
groups to define composite or process services over and above these. Providing the basic
core services were standard, this would not be difficult to do.

So, we may define the following operations:

Interface 1: Name: Appointment Scheduling

 Scheduling:bookAppointment – reserves a specific appointment slot

 Scheduling:rescheduleAppointment – reschedules an appointment (i.e. cancels one
and creates another new one)

 Scheduling:reviseAppointment – updates information associated with an
Appointment without changing the slot itself.

 Scheduling:cancelAppointment – cancels an existing appointment

Other considerations for these operations could include the following:

1) A separate “confirmAppointment” operation could be defined, particularly where the
service is being used interactively with a web UI front end.

2) At a logical definition level (SFM in HSSP terms), considering numbers of slots returned
at a time and synchronous vs asynchronous processing would not be issues, so concerns
such as halting a current request or continuation would not considered. For technical
specifications, these need to be at least considered if an asynchronous solution is
provided (a “deliberate” break of a synchronous connection would automatically stop an
in process request, i.e. subject to appropriate reliable messaging solutions).

For the query interface, again we look to V2. Here we have the event: Schedule Query
Message and Response (S25).

Interface 2: Name: Scheduling Query (covers both slot availability and appointment V3
topic queries)

 Query:requestAvailableSlots – requests for appointment slots meeting some supplied
criteria

 Query:getExistingAppointments – requests for details of existing appointments for a
patient, additional filtering criteria can be applied

For the Notification interfaces, we do have V3 precedent, so we can look to those
artifacts. Ideally, an EDA approach (publish-and-subscribe mechanism) would be used
for this functionality, which would enable topic-based subscription. Note that there are

Version 1.0

Page 57 Last Revision 5/21/2008

emerging web service standards to explicitly support this paradigm. However, for now
we will define a normal service interface.

At the operation level, it probably makes sense to define a single operation for the
notifications (which is a one-way operation initiated by the service) rather than separate
ones for each event type. This is because the behavior and event metadata would be
basically the same, as would much of the data content. Additionally, in an SOA world,
the registration capability should be defined as an explicit operation.

 RegisterForAppointmentNotification

 NotifyAppointment

6.1.5.4 Identifying Message Content (Capability/Operation Input and
Output)

The version 3 scheduling domain defines two data models which are used in deriving
messages for the different notification messages. (new appt, revise appt, cancel and no
show). The new and revise appointment notifications are based on the Appointment
RMIM Full (PRSC_RM010000 and message type PRSC_MT010101UV01) which
allows for quite detailed description of the appointments. Cancel and no show
notifications are based on the Minimum Appointment RMIM (PRSC_RM020000). Both
of the RMIMs are copied below from the September 2006 ballot.

Full appt RMIM:

Version 1.0

Page 58 Last Revision 5/21/2008

Minimum appt RMIM:

Following the methodology above, we start with the appropriate classes in scope from a
DIM/D-MIM or most appropriate CIM/R-MIM level model available for this
operation/capability if one is available. For example, if there was a RMIM for booking
and rescheduling then this should have the most relevant information identified already.

The Appointment Minimum RMIM is a subset of the full appointment RMIM. If a single
operation is defined for all notifications, then the data model used must be the full model
to allow for all the needed data to be expressed. This would mean changing the only
required participation (patient) to optional. Another approach would be to split the
notification operation into two operations, one for dealing with new appointments and
revisions (NotifyAppointment) and one for dealing with cancels and no-shows
(NotifyCancelledAppointment)

Version 1.0

Page 59 Last Revision 5/21/2008

Version 1.0

Page 60 Last Revision 5/21/2008

Having one general operation gives many advantages. One disadvantage is for the
implementer who needs to go into the message payload / service call payload to figure
out what should be done. For example even thought the information content for no show
and cancel is the same, the functionality that the developer needs to implement is quite
different (no-show might have billing implications, cancel might initiate some process to
utilize the freed resource)? One reason for going with a single data model could be to get
a single schema on the XML level. This however makes the interface implementation of
the involved applications more complicated because of the large number of optional
structures that the applications will have to deal with. Below are two options for the
notification specification, one with a single data model and one with 2 data models.

Approach 1: Start from the full appointment RMIM and start looking for relevant classes
and CMETs.

NotifyAppointment operation input:

Problem: how do we identify which type of notification the NotifyAppoiment call is
notifying about? There is no data element for this information since in the V3 approach
the interaction expresses what type of notification is in question (new, revise, cancel,
noshow).

Relevent classes and CMETs are:

ActAppointment class, Patient CMET, Service delivery location CMET, Schedule and
resourceSlot classes and resource entities participating in those classes. ResourceSlot
effectiveTime or slotID indicates the time be scheduled.

Output: none

Approach 2: (alternative, use existing schemas as much as possible)

Split notifications into two types:

NotifyAppointmentOrChange

NotifyAppointmentCancelOrNoshow

Input for NotifyAppointmentOrChange: If the notification function covers these, take
RMIM Full Appointment (PRSC_RM010000) and create XML schema from this
diagram manually.

For cancel and no show similarly take the minimum RMIM and manually create XML
schema based on the HMD.

Scheduling:bookAppointment (based on SerAPI work from Finland)

Relevant classes and CMETs for defining input:

Patient CMET, Service delivery location CMET, Schedule and resourceSlot classes and
resource entities participating in those classes. ResourceSlot effectiveTime or slotID
indicates the time to be scheduled.

Output: Schedule, Slot, resource entities participating in those classes and the patient

Version 1.0

Page 61 Last Revision 5/21/2008

(loosely coupled output, in a tightly coupled solution a boolean output would be
sufficient)

6.1.5.4 Identifying Exceptions

Consider receiver responsibilities (interactions) for exceptions

6.1.5.5 WSDL Specifications (only bookAppointment is expanded)

HEADER

<?xml version="1.0" encoding="UTF-8"?>

<definitions targetNamespace="urn:hl7soa:Scheduling"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:hl7soa="urn:hl7soa:Scheduling"

 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 name="Schedulingv1">

TYPES

<types>

<schema elementFormDefault="qualified" targetNamespace="urn:hl7-org:v3"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:hl7soa="urn:hl7soa:Scheduling">

<include schemaLocation="COCT_MT150000UV04.xsd" />

<include schemaLocation="datatypes-base.xsd" />

<element name="AppointmentRequest">

<complexType>

<sequence>

<!-- basic data for Scheduling request: patient, scheduleId (from which schedule
time is booked - note: not the only option to identify schedule - resources etc.), time
to be booked (slot id or interval of time) -->
<xs:element name="subject" type="COCT_MT050002UV04.Patient" nillable="true"
maxOccurs="unbounded"/>

<xs:element name="scheduleId" type="II" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="resourceSlotId" type="II" minOccurs="0"
maxOccurs="unbounded"/>

<xs:element name="effectiveTime" type="IVL_TS" minOccurs="0"
maxOccurs="unbounded" />

Version 1.0

Page 62 Last Revision 5/21/2008

<!-- additional data for Scheduling request: resources (in addition to actual
schedule id, place, resourceGroup, person, manufacturedmaterial -->
<xs:element name="placeId" type="II" minOccurs="0" maxOccurs="unbounded" />

<xs:element name="resourceGroupId" type="II" minOccurs="0"
maxOccurs="unbounded" />

<xs:element name="resourcePerson" type="IdentifiedPerson" minOccurs="0"
maxOccurs="unbounded" />

<xs:element name="manufacturedMaterialId" type="II" minOccurs="0"
maxOccurs="unbounded" />

<element name="noteText" type="string" minOccurs="0"/>

<!-- administrative data for Scheduling request omitted from example -->
</sequence>

</complexType>

<!-- simple person identifier and name -->

</element>

<xs:complexType name="IdentifiedPerson">

<xs:sequence>

<xs:element name="id" type="II" minOccurs="0" maxOccurs="unbounded" />

<xs:element name="name" type="EN" minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>

</complexType>

<!-- etc. (types for AppointmentResponse and others) -->

</schema>

</types>

MESSAGES

<message name="BookAppointmentRequestMessage">

<part name="parameters" element="hl7soa:AppointmentRequest"/>

</message>

<message name=" BookAppointmentResponseMessage">

<part name="parameters" element="hl7soa:AppointmentResponse"/>

</message>

<message name="ExceptionMessage">

<part name="fault" element="hl7soa:Exception"/>

Version 1.0

Page 63 Last Revision 5/21/2008

</message>

ETC.

PORTTYPE

<portType name="AppointmentScheduling">

<operation name="BookAppointment">

<input message="BookAppointmentRequestMessage"/>

<output message="BookAppointmentResponseMessage"/>

<fault name="Exception" message=""/>

</operation>

<operation name="RescheduleAppointment">

<input message=""/>

<output message=""/>

<fault name="Exception" message="hl7soa:ExceptionMessage"/>

</operation>

<operation name="ReviseAppointment">

<input message=""/>

<output message=""/>

<fault name="Exception" message="hl7soa:ExceptionMessage"/>

</operation>

<operation name="CancelAppointment">

<input message=""/>

<output message=""/>

<fault name="Exception" message="hl7soa:ExceptionMessage"/>

</operation>

</portType>

<portType name="SchedulingQuery">

<operation name="RequestAvailableSlots">

<input message=""/>

<output message=""/>

<fault name="Exception" message="hl7soa:ExceptionMessage"/>

</operation>

<operation name="GetExistingAppointments">

Version 1.0

Page 64 Last Revision 5/21/2008

Version 1.0 Page 65 Last Revision 5/21/2008

<input message=""/>

<output message=""/>

<fault name="Exception" message="hl7soa:ExceptionMessage"/>

</operation>

</portType>

BINDING+SERVICE

<binding name="APRServiceSOAPBinding" type="hl7soa:APRServiceOperations">

<wsdlsoap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document"/>

<operation name="Get_pAPR">

<wsdlsoap:operation soapAction="urn:hl7soa:APR#Get_pAPR"/>

<input>

<wsdlsoap:body use="literal"/>

</input>

<output>

<wsdlsoap:body use="literal"/>

</output>

<fault name="Exception">

<wsdlsoap:fault name="Exception" use="literal"/>

</fault>

</operation>

</binding>

<service name="APRService">

<port name="APRServiceSOAPPort" binding="hl7soa:APRServiceSOAPBinding">

<wsdlsoap:address location="http://localhost/APRService/services/APRService"/>

</port>

</service>

6.2 Billing Example (Another Approach)
This section presents another approach that is being taken in the Finance domain for being cognizant of the above service design
principles in current V3 work, specifically around billing.4

Adjundicate
& Pay

HIS
(Hospital Information System)

Master ADT System Billing System

Departmental
(Oncology, OR, ICU

Cardilogy) Ancilliary(RAD, LAB)

Patient Admit (A01- contains Billing Seg. UB1, UB2)

Patient Create Act (P01- contains Billing Seg. UB1, UB2)

Post Detail Financial Transaction (P03/P11)

Patient Update Act (P05- contains Billing Seg. UB1, UB2)

Services
Ordered/
Charged

FICR

Account
Payer

FILL
BILL

FIAB

Provider/Patient
Care

Create Account
Post Charge/Reversal for clinical event

O
rd

er
/

C
ha

rg
e

M
es

sa
ge

s

Materials Management

ADT/Order

 Messages

Post Detail Financial Transaction (P03/P11)

Post
Detail F

inanc
ial T

ransa
cti

on (
P03/P

11
)

Po
st

 D
et

ai
l F

in
an

ci
al

 T
ra

ns
ac

tio
n

(P
03

/P
11

)

Order Messages

Supply/

InverntoryManagement

Messages

Supply/

Inve
rntoryM

anagement

Mess
ages -

?? Not s
ure

 if

th
is exists

Billing Workflow V2

Figure 3: Legacy System

4 Although not critical to understanding, one or two of the diagrams in this section have been compressed and cannot be easily interpreted. Zooming in to 150% r
200% should be sufficient, but original versions are also be available on the HSSP Wiki at http://hssp-implementation.wikispaces.com/ActiveWorkRoot.

Version 1.0 Page 66 Last Revision 5/21/2008

http://hssp-implementation.wikispaces.com/ActiveWorkRoot

Version 2 financial management domain messages are typically coarse-grained and tightly coupled. That is, the messages contained
all the information needed for performing one or more business processes, e.g., the A01 sent by the ADT system notifies all systems

l linking data would be

participating in the scheduled encounter about all patient and encounter information that any of them might need.

It is up to each system to capture the information relevant to its business purposes. Detailed information that is not managed by any
one of these systems is assumed to be captured by the system charged with managing it, and only minima
captured by ancillary systems.

Figure 4: Financial Patterns

Version 1.0 Page 67 Last Revision 5/21/2008

Prior to consideration of design for SOA, Version 3 financial communications merely replicated the same patterns.

Figure 5: V3R2 Financial management domain model

Version 3 Release 2 of the financial management doma odularize discrete business requirements to permit the
composition of messages that support both coarse and fine grained communication patterns whether these are used within tightly or

in is intended to m

loosely coupled environments.

Version 1.0 Page 68 Last Revision 5/21/2008

Figure 6: V3R3 Patient account events model

Analysis of the business processes pertaining to the life cycle of a patient billing account provided insight as to the junctures at which
critical information about this process would be captured, and the virtual location of this “data of record” in a hypothetical
environment in which each business process operated with total autonomy. This provided the boundaries for the modules.

Version 1.0 Page 69 Last Revision 5/21/2008

 analysis Business Process Model

Clinical System

Financial System

Accounts Receivable System

Patient Administration System

Patient Registry

Payer

Patient Account Guarantor

Record of Serv ice
Prov ision

Prov ider

Renders Serv ice/Supply/Personnel
Resources/Accommodations

(Serv ice)
Request Financial System

Posts Charge/Credit for
Service to PBA

Receives Request from
Clinical System to Post
Charge/Credit to PBA

Financial System

PBA Record w
Inv oicable

Charge

ACKPosts Charge/Credit as a
Financial Transaction to the

PBA

Clinical System expects Ack or Confirmation
Msg?

Confirmation
w trace

Receive
Ack/Confirm

w Trace

Financial
Transaction Post to

PBA trace

Accounts Receiv able
System

Receive Financial
Transaction Post

Account
Receivable

Request

Send Financial
Transaction Porst

Account Receivable
Request

Financial System expects Ack or Confirmation w Trace Msg?

Ack

Confirmation
w trace

Posts Inv oicable
Charge

Patient Account
Receiv able
Serv ice and
Patient Pay

Charge Debit

Patient Administion
system

Patient
Registration

Message

Patient Registry

Receives
Patient

Registrations

Registers Patient

Schedules/Admits
Patient

Patient
Registration

Send Request to
create Patient Bil l ing

Account

Send Request to create
Patient Account

Receivable

Receive Request
to Create Patient
Bil l ing Account

Create Patient Billing
Account

Patient Billing
Account

Receive
Request to

Create
Patient
Account

Receivable

Create Patient
Account Receiv able Patient Account

Receiv able with
Patient Pay

Charges

Invoice
Request to

Account
Guarantor

Receive
Guarantor
Remittance

Payer

Account Guarantor

Receives
Invoice

Request for
Patient Pay

Charge

Guarantor
remits patient

pay charge
amount

Credits Account
Receiv able for

Patient Pay Charge

Patient Account
Receiv able with
Serv ice Charge
and Patient Pay

Credit

Figure 7: Business Process Model

For example, patient demographics are captured at admission, and may be augmented with information derived from covered party
information captured during eligibility verification. The patient demographics might be stored in (1) a patient registry in a loosely
coupled federated system supported by a very cohesive, complete, and fine grained service; (2) a master file in a tightly coupled
legacy system supported by coarse grained, more or less complete services; or (3) within the patient’s electronic or non-electronic

Version 1.0 Page 70 Last Revision 5/21/2008

health record in system supported by a “mixed-bag” of services. To arrive at the appropriate level of design time granularity, it is best
to develop fine grained services (for modularity) that support loosely coupled systems (for inclusive support of all data requirements),
which of course, would not suit implementation (too much overhead, etc, see above). For implementation purposes, you can then
compose and constrain the modules so that environments requiring either fine or coarse grained services may be supported.

For example, encounter information may be captured at scheduling or be contained within a referral message. The coverage
information may be captured at admission from the patient, or obtained via an eligibility verification transaction. The guarantor
information may be collected at admission or derived from an eligibility verification response from a payer. In all these cases, there
seem to be modules of information captured at typical steps in the business process. However, the location in which the “data of
record” is stored may be quite diverse. The information may be transferred to the financial system within an admission or scheduling
notification (coarse grained service environment), or obtained by the financial system from the patient registry based on keys sent in
the notifications (fine grained service environment). Design the modules as if each were managed and accessed independently.
Compose and constrain modules to support business process configuration needs.

Figure 8: Common Services and the communication bus

Version 1.0 Page 71 Last Revision 5/21/2008

Based on this analysis, Release 2 Version 3 messages within the Financial Management Domain are being designed to permit coupling
at the appropriate level of granularity given the implementers’ enterprise configuration. To the extent possible, each module is
constructed as a CMET. Each CMET has a number of variants that support a range of use cases: From a tightly coupled environment
which requires only minimal “key” information such as the identifiers needed to locate an entity in a registry (“Skinny” CMETs such
as the identified, indentified-confirmable, informational, identified informational, minimal, and contactable variants) to the most
robust transfer of information needed in a loosely coupled environment where systems do not have access to repositories for that
information (“Fat” CMETs such as the basic, enhanced, business-specific, e., and universal variants) .

In addition, where there are similar structures to the modules, these are abstracted to permit reuse of similar semantic constructs. For
example, a patient billing account is a constraint on an account with a “holder” played by the role of the owner and responsible party
scoped by the entity recognizing the owner and played by an owning entity. The same structure can be reused for a guarantor, a payer,
a payee, and a cost account.

Figure 9: Universal account model

Version 1.0 Page 72 Last Revision 5/21/2008

At the most generic level, there can be a CMET that includes all “flavors” of like CMETs to permit selection of the appropriate one
for the business circumstances. A currently balloted example is the A_Billable universal, which supports selection of all types of
billable services, and could easily be extended to include new ones.

Figure 10: Universal billable model

This design approach permits the construction of communication interfaces that can be constrained at run time to the appropriate level
of granularity required by the degree of service interdependencies (coupling).

Version 1.0 Page 73 Last Revision 5/21/2008

 Fine Grained Coarse Grained

Tightly
Coupled

Use constrained “typed” CMET RMIMs as the interface, e.g.,
A_AccountPayor (contact)

Skinny CMETs associated with the focal business object,
optionally associated as needed at run time

Loosely
Coupled

Use loose CMET RMIMs that can be constrained for type and
robustness of data content at run time depending on coupling
requirements.

Fat CMETs associated with the focal business object, which
can be dropped or constrained at run time depending on
coupling requirements. Using a choice box with types of
A_Account universals, e.g., A_AccountGuarantor, A_Account

Version 1.0 Page 74 Last Revision 5/21/2008

Version 1.0 Page 75 Last Revision 5/21/2008

Version 1.0 Page 76 Last Revision 5/21/2008

Table 15: Coupling and Granularity model for billing use case

7 Profiling and Conformance
The concept of profiling of Services has been defined within HSSP to provide a

means to provide a fairly generic service description with more specific implementations.
Functional profiles are defined to provide a means of sub-setting functional capabilities,
semantic profiles as a means of supporting different information models within the same
operations, and conformance profiles which provide a combination of the two. Further
details can be found in the overall SSF.

These should also be considered for Services defined using this methodology.
Referring to the Appointments scenario in section 6 above, it would be possible to define
a generic “Scheduling” service, and define functional and semantic profiles to deal
specifically with Outpatient Appointments.

8 Appendix A – Relationship to HSSP SSF
This section depicts the relationship between the SOA4HL7 methodology and the overall
HSSP Service Specification Framework. The first diagram shows SOA4HL7 within the
overall SSF context. The other two diagrams show drill downs of the sub-processes for
creating the SFM and RFP that are part of the main SSF. The drilldown for the
SOA4HL7 is included above in section 3.

Version 1.0

Page 77 Last Revision 5/21/2008

8.1 Overall SSDF Process (including SOA4HL7)

Page 78 Last Revision 5/21/2008

Figure 11: Overall SSF Process (including SOA4HL7)

 ad ice Specification Development Framework Serv[Lite]

Start

Service Identification
and Conceptualization

High Level Business Needs

HL7.org

SFM
Identification

:Service
Functional

Model Creation

Functi alon
Model

Passes HL7 Ballot?

OMG.org

:Create the
Request for

Proposal (RFP)

RFP

Industry.com

SSDF or "Lite" Process?

SOA 4 HL7 Lite Process

Implementation

RFP is
Appropriate?

[SSDF]

[No] [No]

Name:
Package:

Service Specification Development Framework Primary Use Cases 1.0
koischjj Version:

Author:

Version 1.0

8.2 Produce SFM (part of main SSDF)
 ad Service Functional Model

Model Creation

High Level
Business Needs

Model

Specify
Scope of
Service

Model Complete?

Map the functional model to the
business needs

Fulfills High Level Business Needs?

Merge

Conformance Profile Creation and Application

Conformance Profile

Define
Interface
Profiles

Require
Additional
Functional

Profile

Merge

Define Semantic Profile

Select
Constraining
Mechanism

Select
Information

Model

Start

Identify
Conformance

Profile

What are the
mandatory

features of an
implementation?

Map
Conformance

Profiles to
Business needs

Does Conformance Profile support business needs?

What are
the

mandatory
supported
platforms? Final

Reference
and

Define
Relevant
Content

What
assumptions
can be made

about
infrastructure?

Identify
Considerations

for RFP Fin

Identify Abstract Interface
Interface
definition

Start

Define
functional
process

scenarios,
use cases

Define
Functions

Define the
CIM of I/O
parameters

Identify
Interface

Merge

Functionally Abstract?

Require More Interfaces?

High Level
Business Needs

[No]

[Yes]

[No]

[No]

[Yes]

[Yes]

[Yes]

[No]

Figure 12: Produce SFM (part of main SSF)

Version 1.0

Page 79 Last Revision 5/21/2008

8.3 Produce RFP (part of main SSF)
 ad Service RFP

Create the Request for Proposal (RFP)

RFC or RFP

SFM

Satisfied with RFP?

Generate Mandatory Requirements

Mandatory
Conformance

Profiles

Global Requirements
from HSSP Boiler
Plate (Mandatory)

Create
Evaluation
Criteria For
Mandatory

requirements

Mandatroy
Requirements

Evaluation Criteria
(Mandatory)

Generate Optional requirements

OMG
BoilerPlate

Create
Evaluation

Criteria

Mandatory
Platforms

Mandatory
features

Mandatory
Profiles

Mandatory
Infrastructure

Optional
Conformance

Profiles

Global Requirements
from HSSP Boilerplate

(Optional)

Optional
Platforms

Optional
features

Optional
Profiles

Optional
Infrastructure

Mandatory
Platform

Independent
Model

Recommendations for
Technical RFP Issuance

Create
Evaluation

Criteria
for

Optional
Requirements

Optional
Requirements

Evaluation
Criteria
(Optional)

Evaluation
Criteria for

Recommendations

Recommendations

Evaluation Criteria
(Recommendations)

Fin

Other HSSP
BoilerPlate

[RFP]

Figure 13: Produce RFP (part of main SSF)

Version 1.0

Page 80 Last Revision 5/21/2008

9 Appendix B - References

CBDI Forum (SOA Practice) - http://www.cbdiforum.com/index.php3

Berners-Lee T. Axioms of design.

http://www.w3.org/DesignIssues/Principles.html#KISS

Papazoglou M, van den Heuvel W-J. Service-Oriented Design and Development
Methodology. Int.J. of Web Engineering and Technology (IJWET), 2006.
http://infolab.uvt.nl/pub/papazogloump-2006-88.pdf

Perepletchikov M, Ryan C, Tari Z. The Impact of Software Development Strategies on
Project and Structural Software Attributes in SOA. Second INTEROP Network of
Excellence Dissemination Workshop (INTEROP'05). 2005. Ayia Napa, Cyprus.

Stojanovic Z. A Method for Component-Based and Service-Oriented Software Systems
Engineering. Delft University of Technology, 2005.

Zimmermann O, Schlimm N, Waller G, Pestel M. Analysis and Design Techniques for
Service-Oriented Development and Integration.
http://www.perspectivesonwebservices.de/download/INF05-ServiceModelingv11.pdf

Version 1.0

Page 81 Last Revision 5/21/2008

http://infolab.uvt.nl/pub/papazogloump-2006-88.pdf
http://www.perspectivesonwebservices.de/download/INF05-ServiceModelingv11.pdf

	Introduction
	Purpose
	Background
	Scope
	When to Use Services
	Service Definitions
	Types of Services
	Services, Specifications and Contracts
	Structure of a Service Contract
	Interoperability using Web Services

	Target Audience

	Methodology Requirements
	Methodology Definition Context
	Methodology Content

	High Level Process
	Description
	Other Context

	Detailed Methodology for Service Definition
	Approach Foundations (Top-Down vs. Bottom-Up)
	Methodology Options
	Service Definition Methodology
	Overview / Elements of a Service
	Identifying a Service
	Guidelines
	Rationale / Discussion
	HL7 Based Examples

	Identifying Interfaces
	Guidelines
	Rationale / Discussion
	HL7 Based Examples

	Identifying Capabilities / Operations
	Guidelines
	Rationale / Discussion
	HL7 Based Examples
	Define Exceptions

	Identifying Message Content (Capability/Operation Input and
	Guidelines
	Rationale / Discussion
	HL7 Based Examples

	Activities / Process Steps
	Requirements and Functional Specification
	Solution Specification (PIM)
	Technical Specification (PSM)
	Implementation and Deployment

	WSDL Specifications

	Guidance for Design Decisions
	Service Design Considerations
	Modular Design
	Tolerance of Independent Invention
	Types of main functional requirements
	Adaptability
	Granularity
	Abstraction level and composition
	Cohesion/coupling/complexity
	Coupling
	Cohesion

	Completeness
	Design for Reuse

	Security
	Process Management
	Technical Governance

	Use Cases
	Appointment Scheduling
	Physician Arranges For An Inpatient Stay
	Patient Reschedules Outpatient Appointment
	Patient Revises Outpatient Appointment
	Physician Cancels Inpatient Stay for Patient
	Defining Services for the Appointment Scenario
	Defining the Service
	Defining the Interfaces
	Defining the Operations
	Identifying Message Content (Capability/Operation Input and

	Billing Example (Another Approach)

	Profiling and Conformance
	Appendix A – Relationship to HSSP SSF
	Overall SSDF Process (including SOA4HL7)
	Produce SFM (part of main SSDF)
	Produce RFP (part of main SSF)

	Appendix B - References

